Description: Equality theorem based on class2set . (Contributed by NM, 13-Dec-2005) (Proof shortened by Raph Levien, 30-Jun-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | class2seteq | |- ( A e. V -> { x e. A | A e. _V } = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | |- ( A e. V -> A e. _V ) |
|
2 | ax-1 | |- ( A e. _V -> ( x e. A -> A e. _V ) ) |
|
3 | 2 | ralrimiv | |- ( A e. _V -> A. x e. A A e. _V ) |
4 | rabid2 | |- ( A = { x e. A | A e. _V } <-> A. x e. A A e. _V ) |
|
5 | 3 4 | sylibr | |- ( A e. _V -> A = { x e. A | A e. _V } ) |
6 | 5 | eqcomd | |- ( A e. _V -> { x e. A | A e. _V } = A ) |
7 | 1 6 | syl | |- ( A e. V -> { x e. A | A e. _V } = A ) |