Metamath Proof Explorer


Theorem class2seteq

Description: Equality theorem based on class2set . (Contributed by NM, 13-Dec-2005) (Proof shortened by Raph Levien, 30-Jun-2006)

Ref Expression
Assertion class2seteq
|- ( A e. V -> { x e. A | A e. _V } = A )

Proof

Step Hyp Ref Expression
1 elex
 |-  ( A e. V -> A e. _V )
2 ax-1
 |-  ( A e. _V -> ( x e. A -> A e. _V ) )
3 2 ralrimiv
 |-  ( A e. _V -> A. x e. A A e. _V )
4 rabid2
 |-  ( A = { x e. A | A e. _V } <-> A. x e. A A e. _V )
5 3 4 sylibr
 |-  ( A e. _V -> A = { x e. A | A e. _V } )
6 5 eqcomd
 |-  ( A e. _V -> { x e. A | A e. _V } = A )
7 1 6 syl
 |-  ( A e. V -> { x e. A | A e. _V } = A )