Description: Equality theorem based on class2set . (Contributed by NM, 13-Dec-2005) (Proof shortened by Raph Levien, 30-Jun-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | class2seteq | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V } = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
2 | ax-1 | ⊢ ( 𝐴 ∈ V → ( 𝑥 ∈ 𝐴 → 𝐴 ∈ V ) ) | |
3 | 2 | ralrimiv | ⊢ ( 𝐴 ∈ V → ∀ 𝑥 ∈ 𝐴 𝐴 ∈ V ) |
4 | rabid2 | ⊢ ( 𝐴 = { 𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V } ↔ ∀ 𝑥 ∈ 𝐴 𝐴 ∈ V ) | |
5 | 3 4 | sylibr | ⊢ ( 𝐴 ∈ V → 𝐴 = { 𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V } ) |
6 | 5 | eqcomd | ⊢ ( 𝐴 ∈ V → { 𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V } = 𝐴 ) |
7 | 1 6 | syl | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V } = 𝐴 ) |