Metamath Proof Explorer


Theorem class2seteq

Description: Equality theorem based on class2set . (Contributed by NM, 13-Dec-2005) (Proof shortened by Raph Levien, 30-Jun-2006)

Ref Expression
Assertion class2seteq ( 𝐴𝑉 → { 𝑥𝐴𝐴 ∈ V } = 𝐴 )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴𝑉𝐴 ∈ V )
2 ax-1 ( 𝐴 ∈ V → ( 𝑥𝐴𝐴 ∈ V ) )
3 2 ralrimiv ( 𝐴 ∈ V → ∀ 𝑥𝐴 𝐴 ∈ V )
4 rabid2 ( 𝐴 = { 𝑥𝐴𝐴 ∈ V } ↔ ∀ 𝑥𝐴 𝐴 ∈ V )
5 3 4 sylibr ( 𝐴 ∈ V → 𝐴 = { 𝑥𝐴𝐴 ∈ V } )
6 5 eqcomd ( 𝐴 ∈ V → { 𝑥𝐴𝐴 ∈ V } = 𝐴 )
7 1 6 syl ( 𝐴𝑉 → { 𝑥𝐴𝐴 ∈ V } = 𝐴 )