Metamath Proof Explorer


Theorem class2seteq

Description: Equality theorem based on class2set . (Contributed by NM, 13-Dec-2005) (Proof shortened by Raph Levien, 30-Jun-2006)

Ref Expression
Assertion class2seteq A V x A | A V = A

Proof

Step Hyp Ref Expression
1 elex A V A V
2 ax-1 A V x A A V
3 2 ralrimiv A V x A A V
4 rabid2 A = x A | A V x A A V
5 3 4 sylibr A V A = x A | A V
6 5 eqcomd A V x A | A V = A
7 1 6 syl A V x A | A V = A