Metamath Proof Explorer


Theorem clatp0cl

Description: The poset zero of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018)

Ref Expression
Hypotheses clatp0cl.b
|- B = ( Base ` W )
clatp0cl.0
|- .0. = ( 0. ` W )
Assertion clatp0cl
|- ( W e. CLat -> .0. e. B )

Proof

Step Hyp Ref Expression
1 clatp0cl.b
 |-  B = ( Base ` W )
2 clatp0cl.0
 |-  .0. = ( 0. ` W )
3 eqid
 |-  ( glb ` W ) = ( glb ` W )
4 1 3 2 p0val
 |-  ( W e. CLat -> .0. = ( ( glb ` W ) ` B ) )
5 ssid
 |-  B C_ B
6 1 3 clatglbcl
 |-  ( ( W e. CLat /\ B C_ B ) -> ( ( glb ` W ) ` B ) e. B )
7 5 6 mpan2
 |-  ( W e. CLat -> ( ( glb ` W ) ` B ) e. B )
8 4 7 eqeltrd
 |-  ( W e. CLat -> .0. e. B )