Metamath Proof Explorer


Theorem clatp0cl

Description: The poset zero of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018)

Ref Expression
Hypotheses clatp0cl.b 𝐵 = ( Base ‘ 𝑊 )
clatp0cl.0 0 = ( 0. ‘ 𝑊 )
Assertion clatp0cl ( 𝑊 ∈ CLat → 0𝐵 )

Proof

Step Hyp Ref Expression
1 clatp0cl.b 𝐵 = ( Base ‘ 𝑊 )
2 clatp0cl.0 0 = ( 0. ‘ 𝑊 )
3 eqid ( glb ‘ 𝑊 ) = ( glb ‘ 𝑊 )
4 1 3 2 p0val ( 𝑊 ∈ CLat → 0 = ( ( glb ‘ 𝑊 ) ‘ 𝐵 ) )
5 ssid 𝐵𝐵
6 1 3 clatglbcl ( ( 𝑊 ∈ CLat ∧ 𝐵𝐵 ) → ( ( glb ‘ 𝑊 ) ‘ 𝐵 ) ∈ 𝐵 )
7 5 6 mpan2 ( 𝑊 ∈ CLat → ( ( glb ‘ 𝑊 ) ‘ 𝐵 ) ∈ 𝐵 )
8 4 7 eqeltrd ( 𝑊 ∈ CLat → 0𝐵 )