| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climdivf.1 |
|- F/ k ph |
| 2 |
|
climdivf.2 |
|- F/_ k F |
| 3 |
|
climdivf.3 |
|- F/_ k G |
| 4 |
|
climdivf.4 |
|- F/_ k H |
| 5 |
|
climdivf.5 |
|- Z = ( ZZ>= ` M ) |
| 6 |
|
climdivf.6 |
|- ( ph -> M e. ZZ ) |
| 7 |
|
climdivf.7 |
|- ( ph -> F ~~> A ) |
| 8 |
|
climdivf.8 |
|- ( ph -> H e. X ) |
| 9 |
|
climdivf.9 |
|- ( ph -> G ~~> B ) |
| 10 |
|
climdivf.10 |
|- ( ph -> B =/= 0 ) |
| 11 |
|
climdivf.11 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 12 |
|
climdivf.12 |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. ( CC \ { 0 } ) ) |
| 13 |
|
climdivf.13 |
|- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) / ( G ` k ) ) ) |
| 14 |
|
nfmpt1 |
|- F/_ k ( k e. Z |-> ( 1 / ( G ` k ) ) ) |
| 15 |
|
simpr |
|- ( ( ph /\ k e. Z ) -> k e. Z ) |
| 16 |
12
|
eldifad |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
| 17 |
|
eldifsni |
|- ( ( G ` k ) e. ( CC \ { 0 } ) -> ( G ` k ) =/= 0 ) |
| 18 |
12 17
|
syl |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) =/= 0 ) |
| 19 |
16 18
|
reccld |
|- ( ( ph /\ k e. Z ) -> ( 1 / ( G ` k ) ) e. CC ) |
| 20 |
|
eqid |
|- ( k e. Z |-> ( 1 / ( G ` k ) ) ) = ( k e. Z |-> ( 1 / ( G ` k ) ) ) |
| 21 |
20
|
fvmpt2 |
|- ( ( k e. Z /\ ( 1 / ( G ` k ) ) e. CC ) -> ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) = ( 1 / ( G ` k ) ) ) |
| 22 |
15 19 21
|
syl2anc |
|- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) = ( 1 / ( G ` k ) ) ) |
| 23 |
5
|
fvexi |
|- Z e. _V |
| 24 |
23
|
mptex |
|- ( k e. Z |-> ( 1 / ( G ` k ) ) ) e. _V |
| 25 |
24
|
a1i |
|- ( ph -> ( k e. Z |-> ( 1 / ( G ` k ) ) ) e. _V ) |
| 26 |
1 3 14 5 6 9 10 12 22 25
|
climrecf |
|- ( ph -> ( k e. Z |-> ( 1 / ( G ` k ) ) ) ~~> ( 1 / B ) ) |
| 27 |
22 19
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) e. CC ) |
| 28 |
11 16 18
|
divrecd |
|- ( ( ph /\ k e. Z ) -> ( ( F ` k ) / ( G ` k ) ) = ( ( F ` k ) x. ( 1 / ( G ` k ) ) ) ) |
| 29 |
22
|
eqcomd |
|- ( ( ph /\ k e. Z ) -> ( 1 / ( G ` k ) ) = ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) ) |
| 30 |
29
|
oveq2d |
|- ( ( ph /\ k e. Z ) -> ( ( F ` k ) x. ( 1 / ( G ` k ) ) ) = ( ( F ` k ) x. ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) ) ) |
| 31 |
13 28 30
|
3eqtrd |
|- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) x. ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) ) ) |
| 32 |
1 2 14 4 5 6 7 8 26 11 27 31
|
climmulf |
|- ( ph -> H ~~> ( A x. ( 1 / B ) ) ) |
| 33 |
|
climcl |
|- ( F ~~> A -> A e. CC ) |
| 34 |
7 33
|
syl |
|- ( ph -> A e. CC ) |
| 35 |
|
climcl |
|- ( G ~~> B -> B e. CC ) |
| 36 |
9 35
|
syl |
|- ( ph -> B e. CC ) |
| 37 |
34 36 10
|
divrecd |
|- ( ph -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
| 38 |
32 37
|
breqtrrd |
|- ( ph -> H ~~> ( A / B ) ) |