| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climdivf.1 |  | 
						
							| 2 |  | climdivf.2 |  | 
						
							| 3 |  | climdivf.3 |  | 
						
							| 4 |  | climdivf.4 |  | 
						
							| 5 |  | climdivf.5 |  | 
						
							| 6 |  | climdivf.6 |  | 
						
							| 7 |  | climdivf.7 |  | 
						
							| 8 |  | climdivf.8 |  | 
						
							| 9 |  | climdivf.9 |  | 
						
							| 10 |  | climdivf.10 |  | 
						
							| 11 |  | climdivf.11 |  | 
						
							| 12 |  | climdivf.12 |  | 
						
							| 13 |  | climdivf.13 |  | 
						
							| 14 |  | nfmpt1 |  | 
						
							| 15 |  | simpr |  | 
						
							| 16 | 12 | eldifad |  | 
						
							| 17 |  | eldifsni |  | 
						
							| 18 | 12 17 | syl |  | 
						
							| 19 | 16 18 | reccld |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 | 20 | fvmpt2 |  | 
						
							| 22 | 15 19 21 | syl2anc |  | 
						
							| 23 | 5 | fvexi |  | 
						
							| 24 | 23 | mptex |  | 
						
							| 25 | 24 | a1i |  | 
						
							| 26 | 1 3 14 5 6 9 10 12 22 25 | climrecf |  | 
						
							| 27 | 22 19 | eqeltrd |  | 
						
							| 28 | 11 16 18 | divrecd |  | 
						
							| 29 | 22 | eqcomd |  | 
						
							| 30 | 29 | oveq2d |  | 
						
							| 31 | 13 28 30 | 3eqtrd |  | 
						
							| 32 | 1 2 14 4 5 6 7 8 26 11 27 31 | climmulf |  | 
						
							| 33 |  | climcl |  | 
						
							| 34 | 7 33 | syl |  | 
						
							| 35 |  | climcl |  | 
						
							| 36 | 9 35 | syl |  | 
						
							| 37 | 34 36 10 | divrecd |  | 
						
							| 38 | 32 37 | breqtrrd |  |