Metamath Proof Explorer


Theorem climrecf

Description: A version of climrec using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses climrecf.1 kφ
climrecf.2 _kG
climrecf.3 _kH
climrecf.4 Z=M
climrecf.5 φM
climrecf.6 φGA
climrecf.7 φA0
climrecf.8 φkZGk0
climrecf.9 φkZHk=1Gk
climrecf.10 φHW
Assertion climrecf φH1A

Proof

Step Hyp Ref Expression
1 climrecf.1 kφ
2 climrecf.2 _kG
3 climrecf.3 _kH
4 climrecf.4 Z=M
5 climrecf.5 φM
6 climrecf.6 φGA
7 climrecf.7 φA0
8 climrecf.8 φkZGk0
9 climrecf.9 φkZHk=1Gk
10 climrecf.10 φHW
11 nfv kjZ
12 1 11 nfan kφjZ
13 nfcv _kj
14 2 13 nffv _kGj
15 14 nfel1 kGj0
16 12 15 nfim kφjZGj0
17 eleq1w k=jkZjZ
18 17 anbi2d k=jφkZφjZ
19 fveq2 k=jGk=Gj
20 19 eleq1d k=jGk0Gj0
21 18 20 imbi12d k=jφkZGk0φjZGj0
22 16 21 8 chvarfv φjZGj0
23 3 13 nffv _kHj
24 nfcv _k1
25 nfcv _k÷
26 24 25 14 nfov _k1Gj
27 23 26 nfeq kHj=1Gj
28 12 27 nfim kφjZHj=1Gj
29 fveq2 k=jHk=Hj
30 19 oveq2d k=j1Gk=1Gj
31 29 30 eqeq12d k=jHk=1GkHj=1Gj
32 18 31 imbi12d k=jφkZHk=1GkφjZHj=1Gj
33 28 32 9 chvarfv φjZHj=1Gj
34 4 5 6 7 22 33 10 climrec φH1A