Metamath Proof Explorer


Theorem climrecf

Description: A version of climrec using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses climrecf.1 k φ
climrecf.2 _ k G
climrecf.3 _ k H
climrecf.4 Z = M
climrecf.5 φ M
climrecf.6 φ G A
climrecf.7 φ A 0
climrecf.8 φ k Z G k 0
climrecf.9 φ k Z H k = 1 G k
climrecf.10 φ H W
Assertion climrecf φ H 1 A

Proof

Step Hyp Ref Expression
1 climrecf.1 k φ
2 climrecf.2 _ k G
3 climrecf.3 _ k H
4 climrecf.4 Z = M
5 climrecf.5 φ M
6 climrecf.6 φ G A
7 climrecf.7 φ A 0
8 climrecf.8 φ k Z G k 0
9 climrecf.9 φ k Z H k = 1 G k
10 climrecf.10 φ H W
11 nfv k j Z
12 1 11 nfan k φ j Z
13 nfcv _ k j
14 2 13 nffv _ k G j
15 14 nfel1 k G j 0
16 12 15 nfim k φ j Z G j 0
17 eleq1w k = j k Z j Z
18 17 anbi2d k = j φ k Z φ j Z
19 fveq2 k = j G k = G j
20 19 eleq1d k = j G k 0 G j 0
21 18 20 imbi12d k = j φ k Z G k 0 φ j Z G j 0
22 16 21 8 chvarfv φ j Z G j 0
23 3 13 nffv _ k H j
24 nfcv _ k 1
25 nfcv _ k ÷
26 24 25 14 nfov _ k 1 G j
27 23 26 nfeq k H j = 1 G j
28 12 27 nfim k φ j Z H j = 1 G j
29 fveq2 k = j H k = H j
30 19 oveq2d k = j 1 G k = 1 G j
31 29 30 eqeq12d k = j H k = 1 G k H j = 1 G j
32 18 31 imbi12d k = j φ k Z H k = 1 G k φ j Z H j = 1 G j
33 28 32 9 chvarfv φ j Z H j = 1 G j
34 4 5 6 7 22 33 10 climrec φ H 1 A