Metamath Proof Explorer


Theorem clsneiel2

Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the H operator, then membership in the closure of the complement of a subset is equivalent to the subset not being a neighborhood of the point. (Contributed by RP, 7-Jun-2021)

Ref Expression
Hypotheses clsnei.o
|- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) )
clsnei.p
|- P = ( n e. _V |-> ( p e. ( ~P n ^m ~P n ) |-> ( o e. ~P n |-> ( n \ ( p ` ( n \ o ) ) ) ) ) )
clsnei.d
|- D = ( P ` B )
clsnei.f
|- F = ( ~P B O B )
clsnei.h
|- H = ( F o. D )
clsnei.r
|- ( ph -> K H N )
clsneiel.x
|- ( ph -> X e. B )
clsneiel.s
|- ( ph -> S e. ~P B )
Assertion clsneiel2
|- ( ph -> ( X e. ( K ` ( B \ S ) ) <-> -. S e. ( N ` X ) ) )

Proof

Step Hyp Ref Expression
1 clsnei.o
 |-  O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) )
2 clsnei.p
 |-  P = ( n e. _V |-> ( p e. ( ~P n ^m ~P n ) |-> ( o e. ~P n |-> ( n \ ( p ` ( n \ o ) ) ) ) ) )
3 clsnei.d
 |-  D = ( P ` B )
4 clsnei.f
 |-  F = ( ~P B O B )
5 clsnei.h
 |-  H = ( F o. D )
6 clsnei.r
 |-  ( ph -> K H N )
7 clsneiel.x
 |-  ( ph -> X e. B )
8 clsneiel.s
 |-  ( ph -> S e. ~P B )
9 3 5 6 clsneircomplex
 |-  ( ph -> ( B \ S ) e. ~P B )
10 1 2 3 4 5 6 7 9 clsneiel1
 |-  ( ph -> ( X e. ( K ` ( B \ S ) ) <-> -. ( B \ ( B \ S ) ) e. ( N ` X ) ) )
11 8 elpwid
 |-  ( ph -> S C_ B )
12 dfss4
 |-  ( S C_ B <-> ( B \ ( B \ S ) ) = S )
13 11 12 sylib
 |-  ( ph -> ( B \ ( B \ S ) ) = S )
14 13 eleq1d
 |-  ( ph -> ( ( B \ ( B \ S ) ) e. ( N ` X ) <-> S e. ( N ` X ) ) )
15 14 notbid
 |-  ( ph -> ( -. ( B \ ( B \ S ) ) e. ( N ` X ) <-> -. S e. ( N ` X ) ) )
16 10 15 bitrd
 |-  ( ph -> ( X e. ( K ` ( B \ S ) ) <-> -. S e. ( N ` X ) ) )