Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the H operator, then membership in the closure of the complement of a subset is equivalent to the subset not being a neighborhood of the point. (Contributed by RP, 7-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clsnei.o | |- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) |
|
clsnei.p | |- P = ( n e. _V |-> ( p e. ( ~P n ^m ~P n ) |-> ( o e. ~P n |-> ( n \ ( p ` ( n \ o ) ) ) ) ) ) |
||
clsnei.d | |- D = ( P ` B ) |
||
clsnei.f | |- F = ( ~P B O B ) |
||
clsnei.h | |- H = ( F o. D ) |
||
clsnei.r | |- ( ph -> K H N ) |
||
clsneiel.x | |- ( ph -> X e. B ) |
||
clsneiel.s | |- ( ph -> S e. ~P B ) |
||
Assertion | clsneiel2 | |- ( ph -> ( X e. ( K ` ( B \ S ) ) <-> -. S e. ( N ` X ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clsnei.o | |- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) |
|
2 | clsnei.p | |- P = ( n e. _V |-> ( p e. ( ~P n ^m ~P n ) |-> ( o e. ~P n |-> ( n \ ( p ` ( n \ o ) ) ) ) ) ) |
|
3 | clsnei.d | |- D = ( P ` B ) |
|
4 | clsnei.f | |- F = ( ~P B O B ) |
|
5 | clsnei.h | |- H = ( F o. D ) |
|
6 | clsnei.r | |- ( ph -> K H N ) |
|
7 | clsneiel.x | |- ( ph -> X e. B ) |
|
8 | clsneiel.s | |- ( ph -> S e. ~P B ) |
|
9 | 3 5 6 | clsneircomplex | |- ( ph -> ( B \ S ) e. ~P B ) |
10 | 1 2 3 4 5 6 7 9 | clsneiel1 | |- ( ph -> ( X e. ( K ` ( B \ S ) ) <-> -. ( B \ ( B \ S ) ) e. ( N ` X ) ) ) |
11 | 8 | elpwid | |- ( ph -> S C_ B ) |
12 | dfss4 | |- ( S C_ B <-> ( B \ ( B \ S ) ) = S ) |
|
13 | 11 12 | sylib | |- ( ph -> ( B \ ( B \ S ) ) = S ) |
14 | 13 | eleq1d | |- ( ph -> ( ( B \ ( B \ S ) ) e. ( N ` X ) <-> S e. ( N ` X ) ) ) |
15 | 14 | notbid | |- ( ph -> ( -. ( B \ ( B \ S ) ) e. ( N ` X ) <-> -. S e. ( N ` X ) ) ) |
16 | 10 15 | bitrd | |- ( ph -> ( X e. ( K ` ( B \ S ) ) <-> -. S e. ( N ` X ) ) ) |