| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clsnei.o |  |-  O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) | 
						
							| 2 |  | clsnei.p |  |-  P = ( n e. _V |-> ( p e. ( ~P n ^m ~P n ) |-> ( o e. ~P n |-> ( n \ ( p ` ( n \ o ) ) ) ) ) ) | 
						
							| 3 |  | clsnei.d |  |-  D = ( P ` B ) | 
						
							| 4 |  | clsnei.f |  |-  F = ( ~P B O B ) | 
						
							| 5 |  | clsnei.h |  |-  H = ( F o. D ) | 
						
							| 6 |  | clsnei.r |  |-  ( ph -> K H N ) | 
						
							| 7 |  | clsneiel.x |  |-  ( ph -> X e. B ) | 
						
							| 8 |  | clsneiel.s |  |-  ( ph -> S e. ~P B ) | 
						
							| 9 | 3 5 6 | clsneircomplex |  |-  ( ph -> ( B \ S ) e. ~P B ) | 
						
							| 10 | 1 2 3 4 5 6 7 9 | clsneiel1 |  |-  ( ph -> ( X e. ( K ` ( B \ S ) ) <-> -. ( B \ ( B \ S ) ) e. ( N ` X ) ) ) | 
						
							| 11 | 8 | elpwid |  |-  ( ph -> S C_ B ) | 
						
							| 12 |  | dfss4 |  |-  ( S C_ B <-> ( B \ ( B \ S ) ) = S ) | 
						
							| 13 | 11 12 | sylib |  |-  ( ph -> ( B \ ( B \ S ) ) = S ) | 
						
							| 14 | 13 | eleq1d |  |-  ( ph -> ( ( B \ ( B \ S ) ) e. ( N ` X ) <-> S e. ( N ` X ) ) ) | 
						
							| 15 | 14 | notbid |  |-  ( ph -> ( -. ( B \ ( B \ S ) ) e. ( N ` X ) <-> -. S e. ( N ` X ) ) ) | 
						
							| 16 | 10 15 | bitrd |  |-  ( ph -> ( X e. ( K ` ( B \ S ) ) <-> -. S e. ( N ` X ) ) ) |