| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clsnei.o |
|- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) |
| 2 |
|
clsnei.p |
|- P = ( n e. _V |-> ( p e. ( ~P n ^m ~P n ) |-> ( o e. ~P n |-> ( n \ ( p ` ( n \ o ) ) ) ) ) ) |
| 3 |
|
clsnei.d |
|- D = ( P ` B ) |
| 4 |
|
clsnei.f |
|- F = ( ~P B O B ) |
| 5 |
|
clsnei.h |
|- H = ( F o. D ) |
| 6 |
|
clsnei.r |
|- ( ph -> K H N ) |
| 7 |
|
clsneiel.x |
|- ( ph -> X e. B ) |
| 8 |
|
clsneiel.s |
|- ( ph -> S e. ~P B ) |
| 9 |
3 5 6
|
clsneircomplex |
|- ( ph -> ( B \ S ) e. ~P B ) |
| 10 |
1 2 3 4 5 6 7 9
|
clsneiel1 |
|- ( ph -> ( X e. ( K ` ( B \ S ) ) <-> -. ( B \ ( B \ S ) ) e. ( N ` X ) ) ) |
| 11 |
8
|
elpwid |
|- ( ph -> S C_ B ) |
| 12 |
|
dfss4 |
|- ( S C_ B <-> ( B \ ( B \ S ) ) = S ) |
| 13 |
11 12
|
sylib |
|- ( ph -> ( B \ ( B \ S ) ) = S ) |
| 14 |
13
|
eleq1d |
|- ( ph -> ( ( B \ ( B \ S ) ) e. ( N ` X ) <-> S e. ( N ` X ) ) ) |
| 15 |
14
|
notbid |
|- ( ph -> ( -. ( B \ ( B \ S ) ) e. ( N ` X ) <-> -. S e. ( N ` X ) ) ) |
| 16 |
10 15
|
bitrd |
|- ( ph -> ( X e. ( K ` ( B \ S ) ) <-> -. S e. ( N ` X ) ) ) |