| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clsnei.o | ⊢ 𝑂  =  ( 𝑖  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑗  ↑m  𝑖 )  ↦  ( 𝑙  ∈  𝑗  ↦  { 𝑚  ∈  𝑖  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } ) ) ) | 
						
							| 2 |  | clsnei.p | ⊢ 𝑃  =  ( 𝑛  ∈  V  ↦  ( 𝑝  ∈  ( 𝒫  𝑛  ↑m  𝒫  𝑛 )  ↦  ( 𝑜  ∈  𝒫  𝑛  ↦  ( 𝑛  ∖  ( 𝑝 ‘ ( 𝑛  ∖  𝑜 ) ) ) ) ) ) | 
						
							| 3 |  | clsnei.d | ⊢ 𝐷  =  ( 𝑃 ‘ 𝐵 ) | 
						
							| 4 |  | clsnei.f | ⊢ 𝐹  =  ( 𝒫  𝐵 𝑂 𝐵 ) | 
						
							| 5 |  | clsnei.h | ⊢ 𝐻  =  ( 𝐹  ∘  𝐷 ) | 
						
							| 6 |  | clsnei.r | ⊢ ( 𝜑  →  𝐾 𝐻 𝑁 ) | 
						
							| 7 |  | clsneiel.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 8 |  | clsneiel.s | ⊢ ( 𝜑  →  𝑆  ∈  𝒫  𝐵 ) | 
						
							| 9 | 3 5 6 | clsneircomplex | ⊢ ( 𝜑  →  ( 𝐵  ∖  𝑆 )  ∈  𝒫  𝐵 ) | 
						
							| 10 | 1 2 3 4 5 6 7 9 | clsneiel1 | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝐾 ‘ ( 𝐵  ∖  𝑆 ) )  ↔  ¬  ( 𝐵  ∖  ( 𝐵  ∖  𝑆 ) )  ∈  ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 11 | 8 | elpwid | ⊢ ( 𝜑  →  𝑆  ⊆  𝐵 ) | 
						
							| 12 |  | dfss4 | ⊢ ( 𝑆  ⊆  𝐵  ↔  ( 𝐵  ∖  ( 𝐵  ∖  𝑆 ) )  =  𝑆 ) | 
						
							| 13 | 11 12 | sylib | ⊢ ( 𝜑  →  ( 𝐵  ∖  ( 𝐵  ∖  𝑆 ) )  =  𝑆 ) | 
						
							| 14 | 13 | eleq1d | ⊢ ( 𝜑  →  ( ( 𝐵  ∖  ( 𝐵  ∖  𝑆 ) )  ∈  ( 𝑁 ‘ 𝑋 )  ↔  𝑆  ∈  ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 15 | 14 | notbid | ⊢ ( 𝜑  →  ( ¬  ( 𝐵  ∖  ( 𝐵  ∖  𝑆 ) )  ∈  ( 𝑁 ‘ 𝑋 )  ↔  ¬  𝑆  ∈  ( 𝑁 ‘ 𝑋 ) ) ) | 
						
							| 16 | 10 15 | bitrd | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝐾 ‘ ( 𝐵  ∖  𝑆 ) )  ↔  ¬  𝑆  ∈  ( 𝑁 ‘ 𝑋 ) ) ) |