Metamath Proof Explorer


Theorem clsneiel2

Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the H operator, then membership in the closure of the complement of a subset is equivalent to the subset not being a neighborhood of the point. (Contributed by RP, 7-Jun-2021)

Ref Expression
Hypotheses clsnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
clsnei.p 𝑃 = ( 𝑛 ∈ V ↦ ( 𝑝 ∈ ( 𝒫 𝑛m 𝒫 𝑛 ) ↦ ( 𝑜 ∈ 𝒫 𝑛 ↦ ( 𝑛 ∖ ( 𝑝 ‘ ( 𝑛𝑜 ) ) ) ) ) )
clsnei.d 𝐷 = ( 𝑃𝐵 )
clsnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
clsnei.h 𝐻 = ( 𝐹𝐷 )
clsnei.r ( 𝜑𝐾 𝐻 𝑁 )
clsneiel.x ( 𝜑𝑋𝐵 )
clsneiel.s ( 𝜑𝑆 ∈ 𝒫 𝐵 )
Assertion clsneiel2 ( 𝜑 → ( 𝑋 ∈ ( 𝐾 ‘ ( 𝐵𝑆 ) ) ↔ ¬ 𝑆 ∈ ( 𝑁𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 clsnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
2 clsnei.p 𝑃 = ( 𝑛 ∈ V ↦ ( 𝑝 ∈ ( 𝒫 𝑛m 𝒫 𝑛 ) ↦ ( 𝑜 ∈ 𝒫 𝑛 ↦ ( 𝑛 ∖ ( 𝑝 ‘ ( 𝑛𝑜 ) ) ) ) ) )
3 clsnei.d 𝐷 = ( 𝑃𝐵 )
4 clsnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
5 clsnei.h 𝐻 = ( 𝐹𝐷 )
6 clsnei.r ( 𝜑𝐾 𝐻 𝑁 )
7 clsneiel.x ( 𝜑𝑋𝐵 )
8 clsneiel.s ( 𝜑𝑆 ∈ 𝒫 𝐵 )
9 3 5 6 clsneircomplex ( 𝜑 → ( 𝐵𝑆 ) ∈ 𝒫 𝐵 )
10 1 2 3 4 5 6 7 9 clsneiel1 ( 𝜑 → ( 𝑋 ∈ ( 𝐾 ‘ ( 𝐵𝑆 ) ) ↔ ¬ ( 𝐵 ∖ ( 𝐵𝑆 ) ) ∈ ( 𝑁𝑋 ) ) )
11 8 elpwid ( 𝜑𝑆𝐵 )
12 dfss4 ( 𝑆𝐵 ↔ ( 𝐵 ∖ ( 𝐵𝑆 ) ) = 𝑆 )
13 11 12 sylib ( 𝜑 → ( 𝐵 ∖ ( 𝐵𝑆 ) ) = 𝑆 )
14 13 eleq1d ( 𝜑 → ( ( 𝐵 ∖ ( 𝐵𝑆 ) ) ∈ ( 𝑁𝑋 ) ↔ 𝑆 ∈ ( 𝑁𝑋 ) ) )
15 14 notbid ( 𝜑 → ( ¬ ( 𝐵 ∖ ( 𝐵𝑆 ) ) ∈ ( 𝑁𝑋 ) ↔ ¬ 𝑆 ∈ ( 𝑁𝑋 ) ) )
16 10 15 bitrd ( 𝜑 → ( 𝑋 ∈ ( 𝐾 ‘ ( 𝐵𝑆 ) ) ↔ ¬ 𝑆 ∈ ( 𝑁𝑋 ) ) )