Step |
Hyp |
Ref |
Expression |
1 |
|
clsnei.o |
⊢ 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑖 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) |
2 |
|
clsnei.p |
⊢ 𝑃 = ( 𝑛 ∈ V ↦ ( 𝑝 ∈ ( 𝒫 𝑛 ↑m 𝒫 𝑛 ) ↦ ( 𝑜 ∈ 𝒫 𝑛 ↦ ( 𝑛 ∖ ( 𝑝 ‘ ( 𝑛 ∖ 𝑜 ) ) ) ) ) ) |
3 |
|
clsnei.d |
⊢ 𝐷 = ( 𝑃 ‘ 𝐵 ) |
4 |
|
clsnei.f |
⊢ 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 ) |
5 |
|
clsnei.h |
⊢ 𝐻 = ( 𝐹 ∘ 𝐷 ) |
6 |
|
clsnei.r |
⊢ ( 𝜑 → 𝐾 𝐻 𝑁 ) |
7 |
|
clsneifv.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
dfin5 |
⊢ ( 𝒫 𝐵 ∩ ( 𝑁 ‘ 𝑋 ) ) = { 𝑠 ∈ 𝒫 𝐵 ∣ 𝑠 ∈ ( 𝑁 ‘ 𝑋 ) } |
9 |
1 2 3 4 5 6
|
clsneinex |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) ) |
10 |
|
elmapi |
⊢ ( 𝑁 ∈ ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) → 𝑁 : 𝐵 ⟶ 𝒫 𝒫 𝐵 ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → 𝑁 : 𝐵 ⟶ 𝒫 𝒫 𝐵 ) |
12 |
11 7
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ∈ 𝒫 𝒫 𝐵 ) |
13 |
12
|
elpwid |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ⊆ 𝒫 𝐵 ) |
14 |
|
sseqin2 |
⊢ ( ( 𝑁 ‘ 𝑋 ) ⊆ 𝒫 𝐵 ↔ ( 𝒫 𝐵 ∩ ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
15 |
13 14
|
sylib |
⊢ ( 𝜑 → ( 𝒫 𝐵 ∩ ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
16 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝐾 𝐻 𝑁 ) |
17 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝑋 ∈ 𝐵 ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝑠 ∈ 𝒫 𝐵 ) |
19 |
1 2 3 4 5 16 17 18
|
clsneiel2 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝑋 ∈ ( 𝐾 ‘ ( 𝐵 ∖ 𝑠 ) ) ↔ ¬ 𝑠 ∈ ( 𝑁 ‘ 𝑋 ) ) ) |
20 |
19
|
con2bid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝑠 ∈ ( 𝑁 ‘ 𝑋 ) ↔ ¬ 𝑋 ∈ ( 𝐾 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
21 |
20
|
rabbidva |
⊢ ( 𝜑 → { 𝑠 ∈ 𝒫 𝐵 ∣ 𝑠 ∈ ( 𝑁 ‘ 𝑋 ) } = { 𝑠 ∈ 𝒫 𝐵 ∣ ¬ 𝑋 ∈ ( 𝐾 ‘ ( 𝐵 ∖ 𝑠 ) ) } ) |
22 |
8 15 21
|
3eqtr3a |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) = { 𝑠 ∈ 𝒫 𝐵 ∣ ¬ 𝑋 ∈ ( 𝐾 ‘ ( 𝐵 ∖ 𝑠 ) ) } ) |