Metamath Proof Explorer


Theorem clsneifv3

Description: Value of the neighborhoods (convergents) in terms of the closure (interior) function. (Contributed by RP, 27-Jun-2021)

Ref Expression
Hypotheses clsnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
clsnei.p 𝑃 = ( 𝑛 ∈ V ↦ ( 𝑝 ∈ ( 𝒫 𝑛m 𝒫 𝑛 ) ↦ ( 𝑜 ∈ 𝒫 𝑛 ↦ ( 𝑛 ∖ ( 𝑝 ‘ ( 𝑛𝑜 ) ) ) ) ) )
clsnei.d 𝐷 = ( 𝑃𝐵 )
clsnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
clsnei.h 𝐻 = ( 𝐹𝐷 )
clsnei.r ( 𝜑𝐾 𝐻 𝑁 )
clsneifv.x ( 𝜑𝑋𝐵 )
Assertion clsneifv3 ( 𝜑 → ( 𝑁𝑋 ) = { 𝑠 ∈ 𝒫 𝐵 ∣ ¬ 𝑋 ∈ ( 𝐾 ‘ ( 𝐵𝑠 ) ) } )

Proof

Step Hyp Ref Expression
1 clsnei.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
2 clsnei.p 𝑃 = ( 𝑛 ∈ V ↦ ( 𝑝 ∈ ( 𝒫 𝑛m 𝒫 𝑛 ) ↦ ( 𝑜 ∈ 𝒫 𝑛 ↦ ( 𝑛 ∖ ( 𝑝 ‘ ( 𝑛𝑜 ) ) ) ) ) )
3 clsnei.d 𝐷 = ( 𝑃𝐵 )
4 clsnei.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
5 clsnei.h 𝐻 = ( 𝐹𝐷 )
6 clsnei.r ( 𝜑𝐾 𝐻 𝑁 )
7 clsneifv.x ( 𝜑𝑋𝐵 )
8 dfin5 ( 𝒫 𝐵 ∩ ( 𝑁𝑋 ) ) = { 𝑠 ∈ 𝒫 𝐵𝑠 ∈ ( 𝑁𝑋 ) }
9 1 2 3 4 5 6 clsneinex ( 𝜑𝑁 ∈ ( 𝒫 𝒫 𝐵m 𝐵 ) )
10 elmapi ( 𝑁 ∈ ( 𝒫 𝒫 𝐵m 𝐵 ) → 𝑁 : 𝐵 ⟶ 𝒫 𝒫 𝐵 )
11 9 10 syl ( 𝜑𝑁 : 𝐵 ⟶ 𝒫 𝒫 𝐵 )
12 11 7 ffvelrnd ( 𝜑 → ( 𝑁𝑋 ) ∈ 𝒫 𝒫 𝐵 )
13 12 elpwid ( 𝜑 → ( 𝑁𝑋 ) ⊆ 𝒫 𝐵 )
14 sseqin2 ( ( 𝑁𝑋 ) ⊆ 𝒫 𝐵 ↔ ( 𝒫 𝐵 ∩ ( 𝑁𝑋 ) ) = ( 𝑁𝑋 ) )
15 13 14 sylib ( 𝜑 → ( 𝒫 𝐵 ∩ ( 𝑁𝑋 ) ) = ( 𝑁𝑋 ) )
16 6 adantr ( ( 𝜑𝑠 ∈ 𝒫 𝐵 ) → 𝐾 𝐻 𝑁 )
17 7 adantr ( ( 𝜑𝑠 ∈ 𝒫 𝐵 ) → 𝑋𝐵 )
18 simpr ( ( 𝜑𝑠 ∈ 𝒫 𝐵 ) → 𝑠 ∈ 𝒫 𝐵 )
19 1 2 3 4 5 16 17 18 clsneiel2 ( ( 𝜑𝑠 ∈ 𝒫 𝐵 ) → ( 𝑋 ∈ ( 𝐾 ‘ ( 𝐵𝑠 ) ) ↔ ¬ 𝑠 ∈ ( 𝑁𝑋 ) ) )
20 19 con2bid ( ( 𝜑𝑠 ∈ 𝒫 𝐵 ) → ( 𝑠 ∈ ( 𝑁𝑋 ) ↔ ¬ 𝑋 ∈ ( 𝐾 ‘ ( 𝐵𝑠 ) ) ) )
21 20 rabbidva ( 𝜑 → { 𝑠 ∈ 𝒫 𝐵𝑠 ∈ ( 𝑁𝑋 ) } = { 𝑠 ∈ 𝒫 𝐵 ∣ ¬ 𝑋 ∈ ( 𝐾 ‘ ( 𝐵𝑠 ) ) } )
22 8 15 21 3eqtr3a ( 𝜑 → ( 𝑁𝑋 ) = { 𝑠 ∈ 𝒫 𝐵 ∣ ¬ 𝑋 ∈ ( 𝐾 ‘ ( 𝐵𝑠 ) ) } )