| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clsnei.o | ⊢ 𝑂  =  ( 𝑖  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑗  ↑m  𝑖 )  ↦  ( 𝑙  ∈  𝑗  ↦  { 𝑚  ∈  𝑖  ∣  𝑙  ∈  ( 𝑘 ‘ 𝑚 ) } ) ) ) | 
						
							| 2 |  | clsnei.p | ⊢ 𝑃  =  ( 𝑛  ∈  V  ↦  ( 𝑝  ∈  ( 𝒫  𝑛  ↑m  𝒫  𝑛 )  ↦  ( 𝑜  ∈  𝒫  𝑛  ↦  ( 𝑛  ∖  ( 𝑝 ‘ ( 𝑛  ∖  𝑜 ) ) ) ) ) ) | 
						
							| 3 |  | clsnei.d | ⊢ 𝐷  =  ( 𝑃 ‘ 𝐵 ) | 
						
							| 4 |  | clsnei.f | ⊢ 𝐹  =  ( 𝒫  𝐵 𝑂 𝐵 ) | 
						
							| 5 |  | clsnei.h | ⊢ 𝐻  =  ( 𝐹  ∘  𝐷 ) | 
						
							| 6 |  | clsnei.r | ⊢ ( 𝜑  →  𝐾 𝐻 𝑁 ) | 
						
							| 7 | 3 5 6 | clsneibex | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 8 |  | pwexg | ⊢ ( 𝐵  ∈  V  →  𝒫  𝐵  ∈  V ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝜑  ∧  𝐵  ∈  V )  →  𝒫  𝐵  ∈  V ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  V )  →  𝐵  ∈  V ) | 
						
							| 11 | 1 9 10 4 | fsovf1od | ⊢ ( ( 𝜑  ∧  𝐵  ∈  V )  →  𝐹 : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝒫  𝐵  ↑m  𝐵 ) ) | 
						
							| 12 |  | f1ofn | ⊢ ( 𝐹 : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝒫  𝐵  ↑m  𝐵 )  →  𝐹  Fn  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝜑  ∧  𝐵  ∈  V )  →  𝐹  Fn  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 14 | 2 3 10 | dssmapf1od | ⊢ ( ( 𝜑  ∧  𝐵  ∈  V )  →  𝐷 : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 15 |  | f1of | ⊢ ( 𝐷 : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  →  𝐷 : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ⟶ ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( 𝜑  ∧  𝐵  ∈  V )  →  𝐷 : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ⟶ ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 17 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  V )  →  𝐾 𝐻 𝑁 ) | 
						
							| 18 | 5 | breqi | ⊢ ( 𝐾 𝐻 𝑁  ↔  𝐾 ( 𝐹  ∘  𝐷 ) 𝑁 ) | 
						
							| 19 | 17 18 | sylib | ⊢ ( ( 𝜑  ∧  𝐵  ∈  V )  →  𝐾 ( 𝐹  ∘  𝐷 ) 𝑁 ) | 
						
							| 20 | 13 16 19 | brcoffn | ⊢ ( ( 𝜑  ∧  𝐵  ∈  V )  →  ( 𝐾 𝐷 ( 𝐷 ‘ 𝐾 )  ∧  ( 𝐷 ‘ 𝐾 ) 𝐹 𝑁 ) ) | 
						
							| 21 | 7 20 | mpdan | ⊢ ( 𝜑  →  ( 𝐾 𝐷 ( 𝐷 ‘ 𝐾 )  ∧  ( 𝐷 ‘ 𝐾 ) 𝐹 𝑁 ) ) | 
						
							| 22 | 21 | simprd | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐾 ) 𝐹 𝑁 ) | 
						
							| 23 | 1 4 22 | ntrneinex | ⊢ ( 𝜑  →  𝑁  ∈  ( 𝒫  𝒫  𝐵  ↑m  𝐵 ) ) |