Metamath Proof Explorer


Theorem clsneifv3

Description: Value of the neighborhoods (convergents) in terms of the closure (interior) function. (Contributed by RP, 27-Jun-2021)

Ref Expression
Hypotheses clsnei.o O = i V , j V k 𝒫 j i l j m i | l k m
clsnei.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
clsnei.d D = P B
clsnei.f F = 𝒫 B O B
clsnei.h H = F D
clsnei.r φ K H N
clsneifv.x φ X B
Assertion clsneifv3 φ N X = s 𝒫 B | ¬ X K B s

Proof

Step Hyp Ref Expression
1 clsnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 clsnei.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
3 clsnei.d D = P B
4 clsnei.f F = 𝒫 B O B
5 clsnei.h H = F D
6 clsnei.r φ K H N
7 clsneifv.x φ X B
8 dfin5 𝒫 B N X = s 𝒫 B | s N X
9 1 2 3 4 5 6 clsneinex φ N 𝒫 𝒫 B B
10 elmapi N 𝒫 𝒫 B B N : B 𝒫 𝒫 B
11 9 10 syl φ N : B 𝒫 𝒫 B
12 11 7 ffvelrnd φ N X 𝒫 𝒫 B
13 12 elpwid φ N X 𝒫 B
14 sseqin2 N X 𝒫 B 𝒫 B N X = N X
15 13 14 sylib φ 𝒫 B N X = N X
16 6 adantr φ s 𝒫 B K H N
17 7 adantr φ s 𝒫 B X B
18 simpr φ s 𝒫 B s 𝒫 B
19 1 2 3 4 5 16 17 18 clsneiel2 φ s 𝒫 B X K B s ¬ s N X
20 19 con2bid φ s 𝒫 B s N X ¬ X K B s
21 20 rabbidva φ s 𝒫 B | s N X = s 𝒫 B | ¬ X K B s
22 8 15 21 3eqtr3a φ N X = s 𝒫 B | ¬ X K B s