Metamath Proof Explorer


Theorem clsneiel2

Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the H operator, then membership in the closure of the complement of a subset is equivalent to the subset not being a neighborhood of the point. (Contributed by RP, 7-Jun-2021)

Ref Expression
Hypotheses clsnei.o O = i V , j V k 𝒫 j i l j m i | l k m
clsnei.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
clsnei.d D = P B
clsnei.f F = 𝒫 B O B
clsnei.h H = F D
clsnei.r φ K H N
clsneiel.x φ X B
clsneiel.s φ S 𝒫 B
Assertion clsneiel2 φ X K B S ¬ S N X

Proof

Step Hyp Ref Expression
1 clsnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 clsnei.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
3 clsnei.d D = P B
4 clsnei.f F = 𝒫 B O B
5 clsnei.h H = F D
6 clsnei.r φ K H N
7 clsneiel.x φ X B
8 clsneiel.s φ S 𝒫 B
9 3 5 6 clsneircomplex φ B S 𝒫 B
10 1 2 3 4 5 6 7 9 clsneiel1 φ X K B S ¬ B B S N X
11 8 elpwid φ S B
12 dfss4 S B B B S = S
13 11 12 sylib φ B B S = S
14 13 eleq1d φ B B S N X S N X
15 14 notbid φ ¬ B B S N X ¬ S N X
16 10 15 bitrd φ X K B S ¬ S N X