Metamath Proof Explorer


Theorem clsneiel1

Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the H operator, then membership in the closure of a subset is equivalent to the complement of the subset not being a neighborhood of the point. (Contributed by RP, 7-Jun-2021)

Ref Expression
Hypotheses clsnei.o O = i V , j V k 𝒫 j i l j m i | l k m
clsnei.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
clsnei.d D = P B
clsnei.f F = 𝒫 B O B
clsnei.h H = F D
clsnei.r φ K H N
clsneiel.x φ X B
clsneiel.s φ S 𝒫 B
Assertion clsneiel1 φ X K S ¬ B S N X

Proof

Step Hyp Ref Expression
1 clsnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 clsnei.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
3 clsnei.d D = P B
4 clsnei.f F = 𝒫 B O B
5 clsnei.h H = F D
6 clsnei.r φ K H N
7 clsneiel.x φ X B
8 clsneiel.s φ S 𝒫 B
9 3 5 6 clsneibex φ B V
10 9 ancli φ φ B V
11 simpr φ B V B V
12 11 pwexd φ B V 𝒫 B V
13 1 12 11 4 fsovfd φ B V F : 𝒫 B 𝒫 B 𝒫 𝒫 B B
14 13 ffnd φ B V F Fn 𝒫 B 𝒫 B
15 2 3 11 dssmapf1od φ B V D : 𝒫 B 𝒫 B 1-1 onto 𝒫 B 𝒫 B
16 f1of D : 𝒫 B 𝒫 B 1-1 onto 𝒫 B 𝒫 B D : 𝒫 B 𝒫 B 𝒫 B 𝒫 B
17 15 16 syl φ B V D : 𝒫 B 𝒫 B 𝒫 B 𝒫 B
18 5 breqi K H N K F D N
19 6 18 sylib φ K F D N
20 19 adantr φ B V K F D N
21 14 17 20 brcoffn φ B V K D D K D K F N
22 simprl φ B V K D D K D K F N K D D K
23 7 ad2antrr φ B V K D D K D K F N X B
24 8 ad2antrr φ B V K D D K D K F N S 𝒫 B
25 2 3 22 23 24 ntrclselnel1 φ B V K D D K D K F N X K S ¬ X D K B S
26 simprr φ B V K D D K D K F N D K F N
27 simplr φ B V K D D K D K F N B V
28 difssd φ B V K D D K D K F N B S B
29 27 28 sselpwd φ B V K D D K D K F N B S 𝒫 B
30 1 4 26 23 29 ntrneiel φ B V K D D K D K F N X D K B S B S N X
31 30 notbid φ B V K D D K D K F N ¬ X D K B S ¬ B S N X
32 25 31 bitrd φ B V K D D K D K F N X K S ¬ B S N X
33 10 21 32 syl2anc2 φ X K S ¬ B S N X