| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknon1.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | clwwlknon1.c |  |-  C = ( ClWWalksNOn ` G ) | 
						
							| 3 |  | clwwlknon1.e |  |-  E = ( Edg ` G ) | 
						
							| 4 |  | df-nel |  |-  ( { X } e/ E <-> -. { X } e. E ) | 
						
							| 5 | 1 2 3 | clwwlknon1nloop |  |-  ( { X } e/ E -> ( X C 1 ) = (/) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( X e. V /\ { X } e/ E ) -> ( X C 1 ) = (/) ) | 
						
							| 7 |  | s1cli |  |-  <" X "> e. Word _V | 
						
							| 8 | 7 | elexi |  |-  <" X "> e. _V | 
						
							| 9 | 8 | snnz |  |-  { <" X "> } =/= (/) | 
						
							| 10 | 9 | nesymi |  |-  -. (/) = { <" X "> } | 
						
							| 11 |  | eqeq1 |  |-  ( ( X C 1 ) = (/) -> ( ( X C 1 ) = { <" X "> } <-> (/) = { <" X "> } ) ) | 
						
							| 12 | 10 11 | mtbiri |  |-  ( ( X C 1 ) = (/) -> -. ( X C 1 ) = { <" X "> } ) | 
						
							| 13 | 6 12 | syl |  |-  ( ( X e. V /\ { X } e/ E ) -> -. ( X C 1 ) = { <" X "> } ) | 
						
							| 14 | 13 | ex |  |-  ( X e. V -> ( { X } e/ E -> -. ( X C 1 ) = { <" X "> } ) ) | 
						
							| 15 | 4 14 | biimtrrid |  |-  ( X e. V -> ( -. { X } e. E -> -. ( X C 1 ) = { <" X "> } ) ) | 
						
							| 16 | 15 | con4d |  |-  ( X e. V -> ( ( X C 1 ) = { <" X "> } -> { X } e. E ) ) | 
						
							| 17 | 1 2 3 | clwwlknon1loop |  |-  ( ( X e. V /\ { X } e. E ) -> ( X C 1 ) = { <" X "> } ) | 
						
							| 18 | 17 | ex |  |-  ( X e. V -> ( { X } e. E -> ( X C 1 ) = { <" X "> } ) ) | 
						
							| 19 | 16 18 | impbid |  |-  ( X e. V -> ( ( X C 1 ) = { <" X "> } <-> { X } e. E ) ) |