| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwwlknon1.v |
|- V = ( Vtx ` G ) |
| 2 |
|
clwwlknon1.c |
|- C = ( ClWWalksNOn ` G ) |
| 3 |
|
clwwlknon1.e |
|- E = ( Edg ` G ) |
| 4 |
|
df-nel |
|- ( { X } e/ E <-> -. { X } e. E ) |
| 5 |
1 2 3
|
clwwlknon1nloop |
|- ( { X } e/ E -> ( X C 1 ) = (/) ) |
| 6 |
5
|
adantl |
|- ( ( X e. V /\ { X } e/ E ) -> ( X C 1 ) = (/) ) |
| 7 |
|
s1cli |
|- <" X "> e. Word _V |
| 8 |
7
|
elexi |
|- <" X "> e. _V |
| 9 |
8
|
snnz |
|- { <" X "> } =/= (/) |
| 10 |
9
|
nesymi |
|- -. (/) = { <" X "> } |
| 11 |
|
eqeq1 |
|- ( ( X C 1 ) = (/) -> ( ( X C 1 ) = { <" X "> } <-> (/) = { <" X "> } ) ) |
| 12 |
10 11
|
mtbiri |
|- ( ( X C 1 ) = (/) -> -. ( X C 1 ) = { <" X "> } ) |
| 13 |
6 12
|
syl |
|- ( ( X e. V /\ { X } e/ E ) -> -. ( X C 1 ) = { <" X "> } ) |
| 14 |
13
|
ex |
|- ( X e. V -> ( { X } e/ E -> -. ( X C 1 ) = { <" X "> } ) ) |
| 15 |
4 14
|
biimtrrid |
|- ( X e. V -> ( -. { X } e. E -> -. ( X C 1 ) = { <" X "> } ) ) |
| 16 |
15
|
con4d |
|- ( X e. V -> ( ( X C 1 ) = { <" X "> } -> { X } e. E ) ) |
| 17 |
1 2 3
|
clwwlknon1loop |
|- ( ( X e. V /\ { X } e. E ) -> ( X C 1 ) = { <" X "> } ) |
| 18 |
17
|
ex |
|- ( X e. V -> ( { X } e. E -> ( X C 1 ) = { <" X "> } ) ) |
| 19 |
16 18
|
impbid |
|- ( X e. V -> ( ( X C 1 ) = { <" X "> } <-> { X } e. E ) ) |