Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
2 |
|
eqid |
|- ( ClWWalksNOn ` G ) = ( ClWWalksNOn ` G ) |
3 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
4 |
1 2 3
|
clwwlknon1loop |
|- ( ( X e. ( Vtx ` G ) /\ { X } e. ( Edg ` G ) ) -> ( X ( ClWWalksNOn ` G ) 1 ) = { <" X "> } ) |
5 |
|
fveq2 |
|- ( ( X ( ClWWalksNOn ` G ) 1 ) = { <" X "> } -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) = ( # ` { <" X "> } ) ) |
6 |
|
s1cli |
|- <" X "> e. Word _V |
7 |
|
hashsng |
|- ( <" X "> e. Word _V -> ( # ` { <" X "> } ) = 1 ) |
8 |
6 7
|
ax-mp |
|- ( # ` { <" X "> } ) = 1 |
9 |
5 8
|
eqtrdi |
|- ( ( X ( ClWWalksNOn ` G ) 1 ) = { <" X "> } -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) = 1 ) |
10 |
|
1le1 |
|- 1 <_ 1 |
11 |
9 10
|
eqbrtrdi |
|- ( ( X ( ClWWalksNOn ` G ) 1 ) = { <" X "> } -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) <_ 1 ) |
12 |
4 11
|
syl |
|- ( ( X e. ( Vtx ` G ) /\ { X } e. ( Edg ` G ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) <_ 1 ) |
13 |
1 2 3
|
clwwlknon1nloop |
|- ( { X } e/ ( Edg ` G ) -> ( X ( ClWWalksNOn ` G ) 1 ) = (/) ) |
14 |
13
|
adantl |
|- ( ( X e. ( Vtx ` G ) /\ { X } e/ ( Edg ` G ) ) -> ( X ( ClWWalksNOn ` G ) 1 ) = (/) ) |
15 |
|
fveq2 |
|- ( ( X ( ClWWalksNOn ` G ) 1 ) = (/) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) = ( # ` (/) ) ) |
16 |
|
hash0 |
|- ( # ` (/) ) = 0 |
17 |
15 16
|
eqtrdi |
|- ( ( X ( ClWWalksNOn ` G ) 1 ) = (/) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) = 0 ) |
18 |
|
0le1 |
|- 0 <_ 1 |
19 |
17 18
|
eqbrtrdi |
|- ( ( X ( ClWWalksNOn ` G ) 1 ) = (/) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) <_ 1 ) |
20 |
14 19
|
syl |
|- ( ( X e. ( Vtx ` G ) /\ { X } e/ ( Edg ` G ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) <_ 1 ) |
21 |
12 20
|
pm2.61danel |
|- ( X e. ( Vtx ` G ) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) <_ 1 ) |
22 |
|
id |
|- ( -. X e. ( Vtx ` G ) -> -. X e. ( Vtx ` G ) ) |
23 |
22
|
intnanrd |
|- ( -. X e. ( Vtx ` G ) -> -. ( X e. ( Vtx ` G ) /\ 1 e. NN ) ) |
24 |
|
clwwlknon0 |
|- ( -. ( X e. ( Vtx ` G ) /\ 1 e. NN ) -> ( X ( ClWWalksNOn ` G ) 1 ) = (/) ) |
25 |
23 24
|
syl |
|- ( -. X e. ( Vtx ` G ) -> ( X ( ClWWalksNOn ` G ) 1 ) = (/) ) |
26 |
25
|
fveq2d |
|- ( -. X e. ( Vtx ` G ) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) = ( # ` (/) ) ) |
27 |
26 16
|
eqtrdi |
|- ( -. X e. ( Vtx ` G ) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) = 0 ) |
28 |
27 18
|
eqbrtrdi |
|- ( -. X e. ( Vtx ` G ) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) <_ 1 ) |
29 |
21 28
|
pm2.61i |
|- ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) <_ 1 |