Metamath Proof Explorer


Theorem clwwlknon1le1

Description: There is at most one (closed) walk on vertex X of length 1 as word over the set of vertices. (Contributed by AV, 11-Feb-2022) (Revised by AV, 25-Mar-2022)

Ref Expression
Assertion clwwlknon1le1
|- ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) <_ 1

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( Vtx ` G ) = ( Vtx ` G )
2 eqid
 |-  ( ClWWalksNOn ` G ) = ( ClWWalksNOn ` G )
3 eqid
 |-  ( Edg ` G ) = ( Edg ` G )
4 1 2 3 clwwlknon1loop
 |-  ( ( X e. ( Vtx ` G ) /\ { X } e. ( Edg ` G ) ) -> ( X ( ClWWalksNOn ` G ) 1 ) = { <" X "> } )
5 fveq2
 |-  ( ( X ( ClWWalksNOn ` G ) 1 ) = { <" X "> } -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) = ( # ` { <" X "> } ) )
6 s1cli
 |-  <" X "> e. Word _V
7 hashsng
 |-  ( <" X "> e. Word _V -> ( # ` { <" X "> } ) = 1 )
8 6 7 ax-mp
 |-  ( # ` { <" X "> } ) = 1
9 5 8 eqtrdi
 |-  ( ( X ( ClWWalksNOn ` G ) 1 ) = { <" X "> } -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) = 1 )
10 1le1
 |-  1 <_ 1
11 9 10 eqbrtrdi
 |-  ( ( X ( ClWWalksNOn ` G ) 1 ) = { <" X "> } -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) <_ 1 )
12 4 11 syl
 |-  ( ( X e. ( Vtx ` G ) /\ { X } e. ( Edg ` G ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) <_ 1 )
13 1 2 3 clwwlknon1nloop
 |-  ( { X } e/ ( Edg ` G ) -> ( X ( ClWWalksNOn ` G ) 1 ) = (/) )
14 13 adantl
 |-  ( ( X e. ( Vtx ` G ) /\ { X } e/ ( Edg ` G ) ) -> ( X ( ClWWalksNOn ` G ) 1 ) = (/) )
15 fveq2
 |-  ( ( X ( ClWWalksNOn ` G ) 1 ) = (/) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) = ( # ` (/) ) )
16 hash0
 |-  ( # ` (/) ) = 0
17 15 16 eqtrdi
 |-  ( ( X ( ClWWalksNOn ` G ) 1 ) = (/) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) = 0 )
18 0le1
 |-  0 <_ 1
19 17 18 eqbrtrdi
 |-  ( ( X ( ClWWalksNOn ` G ) 1 ) = (/) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) <_ 1 )
20 14 19 syl
 |-  ( ( X e. ( Vtx ` G ) /\ { X } e/ ( Edg ` G ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) <_ 1 )
21 12 20 pm2.61danel
 |-  ( X e. ( Vtx ` G ) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) <_ 1 )
22 id
 |-  ( -. X e. ( Vtx ` G ) -> -. X e. ( Vtx ` G ) )
23 22 intnanrd
 |-  ( -. X e. ( Vtx ` G ) -> -. ( X e. ( Vtx ` G ) /\ 1 e. NN ) )
24 clwwlknon0
 |-  ( -. ( X e. ( Vtx ` G ) /\ 1 e. NN ) -> ( X ( ClWWalksNOn ` G ) 1 ) = (/) )
25 23 24 syl
 |-  ( -. X e. ( Vtx ` G ) -> ( X ( ClWWalksNOn ` G ) 1 ) = (/) )
26 25 fveq2d
 |-  ( -. X e. ( Vtx ` G ) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) = ( # ` (/) ) )
27 26 16 eqtrdi
 |-  ( -. X e. ( Vtx ` G ) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) = 0 )
28 27 18 eqbrtrdi
 |-  ( -. X e. ( Vtx ` G ) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) <_ 1 )
29 21 28 pm2.61i
 |-  ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) <_ 1