| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 2 |  | eqid |  |-  ( ClWWalksNOn ` G ) = ( ClWWalksNOn ` G ) | 
						
							| 3 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 4 | 1 2 3 | clwwlknon1loop |  |-  ( ( X e. ( Vtx ` G ) /\ { X } e. ( Edg ` G ) ) -> ( X ( ClWWalksNOn ` G ) 1 ) = { <" X "> } ) | 
						
							| 5 |  | fveq2 |  |-  ( ( X ( ClWWalksNOn ` G ) 1 ) = { <" X "> } -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) = ( # ` { <" X "> } ) ) | 
						
							| 6 |  | s1cli |  |-  <" X "> e. Word _V | 
						
							| 7 |  | hashsng |  |-  ( <" X "> e. Word _V -> ( # ` { <" X "> } ) = 1 ) | 
						
							| 8 | 6 7 | ax-mp |  |-  ( # ` { <" X "> } ) = 1 | 
						
							| 9 | 5 8 | eqtrdi |  |-  ( ( X ( ClWWalksNOn ` G ) 1 ) = { <" X "> } -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) = 1 ) | 
						
							| 10 |  | 1le1 |  |-  1 <_ 1 | 
						
							| 11 | 9 10 | eqbrtrdi |  |-  ( ( X ( ClWWalksNOn ` G ) 1 ) = { <" X "> } -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) <_ 1 ) | 
						
							| 12 | 4 11 | syl |  |-  ( ( X e. ( Vtx ` G ) /\ { X } e. ( Edg ` G ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) <_ 1 ) | 
						
							| 13 | 1 2 3 | clwwlknon1nloop |  |-  ( { X } e/ ( Edg ` G ) -> ( X ( ClWWalksNOn ` G ) 1 ) = (/) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( X e. ( Vtx ` G ) /\ { X } e/ ( Edg ` G ) ) -> ( X ( ClWWalksNOn ` G ) 1 ) = (/) ) | 
						
							| 15 |  | fveq2 |  |-  ( ( X ( ClWWalksNOn ` G ) 1 ) = (/) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) = ( # ` (/) ) ) | 
						
							| 16 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 17 | 15 16 | eqtrdi |  |-  ( ( X ( ClWWalksNOn ` G ) 1 ) = (/) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) = 0 ) | 
						
							| 18 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 19 | 17 18 | eqbrtrdi |  |-  ( ( X ( ClWWalksNOn ` G ) 1 ) = (/) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) <_ 1 ) | 
						
							| 20 | 14 19 | syl |  |-  ( ( X e. ( Vtx ` G ) /\ { X } e/ ( Edg ` G ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) <_ 1 ) | 
						
							| 21 | 12 20 | pm2.61danel |  |-  ( X e. ( Vtx ` G ) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) <_ 1 ) | 
						
							| 22 |  | id |  |-  ( -. X e. ( Vtx ` G ) -> -. X e. ( Vtx ` G ) ) | 
						
							| 23 | 22 | intnanrd |  |-  ( -. X e. ( Vtx ` G ) -> -. ( X e. ( Vtx ` G ) /\ 1 e. NN ) ) | 
						
							| 24 |  | clwwlknon0 |  |-  ( -. ( X e. ( Vtx ` G ) /\ 1 e. NN ) -> ( X ( ClWWalksNOn ` G ) 1 ) = (/) ) | 
						
							| 25 | 23 24 | syl |  |-  ( -. X e. ( Vtx ` G ) -> ( X ( ClWWalksNOn ` G ) 1 ) = (/) ) | 
						
							| 26 | 25 | fveq2d |  |-  ( -. X e. ( Vtx ` G ) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) = ( # ` (/) ) ) | 
						
							| 27 | 26 16 | eqtrdi |  |-  ( -. X e. ( Vtx ` G ) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) = 0 ) | 
						
							| 28 | 27 18 | eqbrtrdi |  |-  ( -. X e. ( Vtx ` G ) -> ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) <_ 1 ) | 
						
							| 29 | 21 28 | pm2.61i |  |-  ( # ` ( X ( ClWWalksNOn ` G ) 1 ) ) <_ 1 |