| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( ClWWalksNOn ‘ 𝐺 )  =  ( ClWWalksNOn ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 4 | 1 2 3 | clwwlknon1loop | ⊢ ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  { 𝑋 }  ∈  ( Edg ‘ 𝐺 ) )  →  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 )  =  { 〈“ 𝑋 ”〉 } ) | 
						
							| 5 |  | fveq2 | ⊢ ( ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 )  =  { 〈“ 𝑋 ”〉 }  →  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) )  =  ( ♯ ‘ { 〈“ 𝑋 ”〉 } ) ) | 
						
							| 6 |  | s1cli | ⊢ 〈“ 𝑋 ”〉  ∈  Word  V | 
						
							| 7 |  | hashsng | ⊢ ( 〈“ 𝑋 ”〉  ∈  Word  V  →  ( ♯ ‘ { 〈“ 𝑋 ”〉 } )  =  1 ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ ( ♯ ‘ { 〈“ 𝑋 ”〉 } )  =  1 | 
						
							| 9 | 5 8 | eqtrdi | ⊢ ( ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 )  =  { 〈“ 𝑋 ”〉 }  →  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) )  =  1 ) | 
						
							| 10 |  | 1le1 | ⊢ 1  ≤  1 | 
						
							| 11 | 9 10 | eqbrtrdi | ⊢ ( ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 )  =  { 〈“ 𝑋 ”〉 }  →  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) )  ≤  1 ) | 
						
							| 12 | 4 11 | syl | ⊢ ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  { 𝑋 }  ∈  ( Edg ‘ 𝐺 ) )  →  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) )  ≤  1 ) | 
						
							| 13 | 1 2 3 | clwwlknon1nloop | ⊢ ( { 𝑋 }  ∉  ( Edg ‘ 𝐺 )  →  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 )  =  ∅ ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  { 𝑋 }  ∉  ( Edg ‘ 𝐺 ) )  →  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 )  =  ∅ ) | 
						
							| 15 |  | fveq2 | ⊢ ( ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 )  =  ∅  →  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 16 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 17 | 15 16 | eqtrdi | ⊢ ( ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 )  =  ∅  →  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) )  =  0 ) | 
						
							| 18 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 19 | 17 18 | eqbrtrdi | ⊢ ( ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 )  =  ∅  →  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) )  ≤  1 ) | 
						
							| 20 | 14 19 | syl | ⊢ ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  { 𝑋 }  ∉  ( Edg ‘ 𝐺 ) )  →  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) )  ≤  1 ) | 
						
							| 21 | 12 20 | pm2.61danel | ⊢ ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  →  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) )  ≤  1 ) | 
						
							| 22 |  | id | ⊢ ( ¬  𝑋  ∈  ( Vtx ‘ 𝐺 )  →  ¬  𝑋  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 23 | 22 | intnanrd | ⊢ ( ¬  𝑋  ∈  ( Vtx ‘ 𝐺 )  →  ¬  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  1  ∈  ℕ ) ) | 
						
							| 24 |  | clwwlknon0 | ⊢ ( ¬  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  1  ∈  ℕ )  →  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 )  =  ∅ ) | 
						
							| 25 | 23 24 | syl | ⊢ ( ¬  𝑋  ∈  ( Vtx ‘ 𝐺 )  →  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 )  =  ∅ ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( ¬  𝑋  ∈  ( Vtx ‘ 𝐺 )  →  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 27 | 26 16 | eqtrdi | ⊢ ( ¬  𝑋  ∈  ( Vtx ‘ 𝐺 )  →  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) )  =  0 ) | 
						
							| 28 | 27 18 | eqbrtrdi | ⊢ ( ¬  𝑋  ∈  ( Vtx ‘ 𝐺 )  →  ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) )  ≤  1 ) | 
						
							| 29 | 21 28 | pm2.61i | ⊢ ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) )  ≤  1 |