| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 2 |
1
|
a1i |
|- ( T. -> CC = ( Base ` CCfld ) ) |
| 3 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
| 4 |
3
|
a1i |
|- ( T. -> + = ( +g ` CCfld ) ) |
| 5 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 6 |
5
|
a1i |
|- ( T. -> x. = ( .r ` CCfld ) ) |
| 7 |
|
addcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) |
| 8 |
|
addass |
|- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) ) |
| 9 |
|
0cn |
|- 0 e. CC |
| 10 |
|
addlid |
|- ( x e. CC -> ( 0 + x ) = x ) |
| 11 |
|
negcl |
|- ( x e. CC -> -u x e. CC ) |
| 12 |
|
addcom |
|- ( ( -u x e. CC /\ x e. CC ) -> ( -u x + x ) = ( x + -u x ) ) |
| 13 |
11 12
|
mpancom |
|- ( x e. CC -> ( -u x + x ) = ( x + -u x ) ) |
| 14 |
|
negid |
|- ( x e. CC -> ( x + -u x ) = 0 ) |
| 15 |
13 14
|
eqtrd |
|- ( x e. CC -> ( -u x + x ) = 0 ) |
| 16 |
1 3 7 8 9 10 11 15
|
isgrpi |
|- CCfld e. Grp |
| 17 |
16
|
a1i |
|- ( T. -> CCfld e. Grp ) |
| 18 |
|
mulcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
| 19 |
18
|
3adant1 |
|- ( ( T. /\ x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
| 20 |
|
mulass |
|- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) |
| 21 |
20
|
adantl |
|- ( ( T. /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) |
| 22 |
|
adddi |
|- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) ) |
| 23 |
22
|
adantl |
|- ( ( T. /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) ) |
| 24 |
|
adddir |
|- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) |
| 25 |
24
|
adantl |
|- ( ( T. /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) |
| 26 |
|
1cnd |
|- ( T. -> 1 e. CC ) |
| 27 |
|
mullid |
|- ( x e. CC -> ( 1 x. x ) = x ) |
| 28 |
27
|
adantl |
|- ( ( T. /\ x e. CC ) -> ( 1 x. x ) = x ) |
| 29 |
|
mulrid |
|- ( x e. CC -> ( x x. 1 ) = x ) |
| 30 |
29
|
adantl |
|- ( ( T. /\ x e. CC ) -> ( x x. 1 ) = x ) |
| 31 |
|
mulcom |
|- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) = ( y x. x ) ) |
| 32 |
31
|
3adant1 |
|- ( ( T. /\ x e. CC /\ y e. CC ) -> ( x x. y ) = ( y x. x ) ) |
| 33 |
2 4 6 17 19 21 23 25 26 28 30 32
|
iscrngd |
|- ( T. -> CCfld e. CRing ) |
| 34 |
33
|
mptru |
|- CCfld e. CRing |