| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addex |  |-  + e. _V | 
						
							| 2 |  | cnfldstrOLD |  |-  CCfld Struct <. 1 , ; 1 3 >. | 
						
							| 3 |  | plusgid |  |-  +g = Slot ( +g ` ndx ) | 
						
							| 4 |  | snsstp2 |  |-  { <. ( +g ` ndx ) , + >. } C_ { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } | 
						
							| 5 |  | ssun1 |  |-  { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } C_ ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) | 
						
							| 6 |  | ssun1 |  |-  ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) C_ ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) | 
						
							| 7 |  | dfcnfldOLD |  |-  CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) | 
						
							| 8 | 6 7 | sseqtrri |  |-  ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) C_ CCfld | 
						
							| 9 | 5 8 | sstri |  |-  { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } C_ CCfld | 
						
							| 10 | 4 9 | sstri |  |-  { <. ( +g ` ndx ) , + >. } C_ CCfld | 
						
							| 11 | 2 3 10 | strfv |  |-  ( + e. _V -> + = ( +g ` CCfld ) ) | 
						
							| 12 | 1 11 | ax-mp |  |-  + = ( +g ` CCfld ) |