| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnaddabloOLD |
|- + e. AbelOp |
| 2 |
|
ablogrpo |
|- ( + e. AbelOp -> + e. GrpOp ) |
| 3 |
1 2
|
ax-mp |
|- + e. GrpOp |
| 4 |
|
ax-addf |
|- + : ( CC X. CC ) --> CC |
| 5 |
4
|
fdmi |
|- dom + = ( CC X. CC ) |
| 6 |
3 5
|
grporn |
|- CC = ran + |
| 7 |
|
eqid |
|- ( GId ` + ) = ( GId ` + ) |
| 8 |
6 7
|
grpoidval |
|- ( + e. GrpOp -> ( GId ` + ) = ( iota_ y e. CC A. x e. CC ( y + x ) = x ) ) |
| 9 |
3 8
|
ax-mp |
|- ( GId ` + ) = ( iota_ y e. CC A. x e. CC ( y + x ) = x ) |
| 10 |
|
addlid |
|- ( x e. CC -> ( 0 + x ) = x ) |
| 11 |
10
|
rgen |
|- A. x e. CC ( 0 + x ) = x |
| 12 |
|
0cn |
|- 0 e. CC |
| 13 |
6
|
grpoideu |
|- ( + e. GrpOp -> E! y e. CC A. x e. CC ( y + x ) = x ) |
| 14 |
3 13
|
ax-mp |
|- E! y e. CC A. x e. CC ( y + x ) = x |
| 15 |
|
oveq1 |
|- ( y = 0 -> ( y + x ) = ( 0 + x ) ) |
| 16 |
15
|
eqeq1d |
|- ( y = 0 -> ( ( y + x ) = x <-> ( 0 + x ) = x ) ) |
| 17 |
16
|
ralbidv |
|- ( y = 0 -> ( A. x e. CC ( y + x ) = x <-> A. x e. CC ( 0 + x ) = x ) ) |
| 18 |
17
|
riota2 |
|- ( ( 0 e. CC /\ E! y e. CC A. x e. CC ( y + x ) = x ) -> ( A. x e. CC ( 0 + x ) = x <-> ( iota_ y e. CC A. x e. CC ( y + x ) = x ) = 0 ) ) |
| 19 |
12 14 18
|
mp2an |
|- ( A. x e. CC ( 0 + x ) = x <-> ( iota_ y e. CC A. x e. CC ( y + x ) = x ) = 0 ) |
| 20 |
11 19
|
mpbi |
|- ( iota_ y e. CC A. x e. CC ( y + x ) = x ) = 0 |
| 21 |
9 20
|
eqtr2i |
|- 0 = ( GId ` + ) |