Metamath Proof Explorer


Theorem cnmsgn0g

Description: The neutral element of the sign subgroup of the complex numbers. (Contributed by Thierry Arnoux, 1-Nov-2023)

Ref Expression
Hypothesis cnmsgn0g.1
|- U = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } )
Assertion cnmsgn0g
|- 1 = ( 0g ` U )

Proof

Step Hyp Ref Expression
1 cnmsgn0g.1
 |-  U = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } )
2 cnring
 |-  CCfld e. Ring
3 eqid
 |-  ( mulGrp ` CCfld ) = ( mulGrp ` CCfld )
4 3 ringmgp
 |-  ( CCfld e. Ring -> ( mulGrp ` CCfld ) e. Mnd )
5 2 4 ax-mp
 |-  ( mulGrp ` CCfld ) e. Mnd
6 1ex
 |-  1 e. _V
7 6 prid1
 |-  1 e. { 1 , -u 1 }
8 ax-1cn
 |-  1 e. CC
9 neg1cn
 |-  -u 1 e. CC
10 prssi
 |-  ( ( 1 e. CC /\ -u 1 e. CC ) -> { 1 , -u 1 } C_ CC )
11 8 9 10 mp2an
 |-  { 1 , -u 1 } C_ CC
12 cnfldbas
 |-  CC = ( Base ` CCfld )
13 3 12 mgpbas
 |-  CC = ( Base ` ( mulGrp ` CCfld ) )
14 cnfld1
 |-  1 = ( 1r ` CCfld )
15 3 14 ringidval
 |-  1 = ( 0g ` ( mulGrp ` CCfld ) )
16 1 13 15 ress0g
 |-  ( ( ( mulGrp ` CCfld ) e. Mnd /\ 1 e. { 1 , -u 1 } /\ { 1 , -u 1 } C_ CC ) -> 1 = ( 0g ` U ) )
17 5 7 11 16 mp3an
 |-  1 = ( 0g ` U )