Step |
Hyp |
Ref |
Expression |
1 |
|
cnmsgn0g.1 |
|- U = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
2 |
|
cnring |
|- CCfld e. Ring |
3 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
4 |
3
|
ringmgp |
|- ( CCfld e. Ring -> ( mulGrp ` CCfld ) e. Mnd ) |
5 |
2 4
|
ax-mp |
|- ( mulGrp ` CCfld ) e. Mnd |
6 |
|
1ex |
|- 1 e. _V |
7 |
6
|
prid1 |
|- 1 e. { 1 , -u 1 } |
8 |
|
ax-1cn |
|- 1 e. CC |
9 |
|
neg1cn |
|- -u 1 e. CC |
10 |
|
prssi |
|- ( ( 1 e. CC /\ -u 1 e. CC ) -> { 1 , -u 1 } C_ CC ) |
11 |
8 9 10
|
mp2an |
|- { 1 , -u 1 } C_ CC |
12 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
13 |
3 12
|
mgpbas |
|- CC = ( Base ` ( mulGrp ` CCfld ) ) |
14 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
15 |
3 14
|
ringidval |
|- 1 = ( 0g ` ( mulGrp ` CCfld ) ) |
16 |
1 13 15
|
ress0g |
|- ( ( ( mulGrp ` CCfld ) e. Mnd /\ 1 e. { 1 , -u 1 } /\ { 1 , -u 1 } C_ CC ) -> 1 = ( 0g ` U ) ) |
17 |
5 7 11 16
|
mp3an |
|- 1 = ( 0g ` U ) |