Step |
Hyp |
Ref |
Expression |
1 |
|
evpmsubg.s |
|- S = ( SymGrp ` D ) |
2 |
|
evpmsubg.a |
|- A = ( pmEven ` D ) |
3 |
2
|
evpmval |
|- ( D e. Fin -> A = ( `' ( pmSgn ` D ) " { 1 } ) ) |
4 |
|
eqid |
|- ( pmSgn ` D ) = ( pmSgn ` D ) |
5 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
6 |
1 4 5
|
psgnghm2 |
|- ( D e. Fin -> ( pmSgn ` D ) e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
7 |
5
|
cnmsgngrp |
|- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) e. Grp |
8 |
5
|
cnmsgn0g |
|- 1 = ( 0g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
9 |
8
|
0subg |
|- ( ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) e. Grp -> { 1 } e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
10 |
7 9
|
ax-mp |
|- { 1 } e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
11 |
|
ghmpreima |
|- ( ( ( pmSgn ` D ) e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ { 1 } e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) -> ( `' ( pmSgn ` D ) " { 1 } ) e. ( SubGrp ` S ) ) |
12 |
6 10 11
|
sylancl |
|- ( D e. Fin -> ( `' ( pmSgn ` D ) " { 1 } ) e. ( SubGrp ` S ) ) |
13 |
3 12
|
eqeltrd |
|- ( D e. Fin -> A e. ( SubGrp ` S ) ) |