Description: The identity is an even permutation. (Contributed by Thierry Arnoux, 18-Sep-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | evpmid.1 | |- S = ( SymGrp ` D ) |
|
Assertion | evpmid | |- ( D e. Fin -> ( _I |` D ) e. ( pmEven ` D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evpmid.1 | |- S = ( SymGrp ` D ) |
|
2 | 1 | idresperm | |- ( D e. Fin -> ( _I |` D ) e. ( Base ` S ) ) |
3 | eqid | |- ( pmSgn ` D ) = ( pmSgn ` D ) |
|
4 | 3 | psgnid | |- ( D e. Fin -> ( ( pmSgn ` D ) ` ( _I |` D ) ) = 1 ) |
5 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
6 | 1 5 3 | psgnevpmb | |- ( D e. Fin -> ( ( _I |` D ) e. ( pmEven ` D ) <-> ( ( _I |` D ) e. ( Base ` S ) /\ ( ( pmSgn ` D ) ` ( _I |` D ) ) = 1 ) ) ) |
7 | 2 4 6 | mpbir2and | |- ( D e. Fin -> ( _I |` D ) e. ( pmEven ` D ) ) |