Metamath Proof Explorer


Theorem evpmid

Description: The identity is an even permutation. (Contributed by Thierry Arnoux, 18-Sep-2023)

Ref Expression
Hypothesis evpmid.1
|- S = ( SymGrp ` D )
Assertion evpmid
|- ( D e. Fin -> ( _I |` D ) e. ( pmEven ` D ) )

Proof

Step Hyp Ref Expression
1 evpmid.1
 |-  S = ( SymGrp ` D )
2 1 idresperm
 |-  ( D e. Fin -> ( _I |` D ) e. ( Base ` S ) )
3 eqid
 |-  ( pmSgn ` D ) = ( pmSgn ` D )
4 3 psgnid
 |-  ( D e. Fin -> ( ( pmSgn ` D ) ` ( _I |` D ) ) = 1 )
5 eqid
 |-  ( Base ` S ) = ( Base ` S )
6 1 5 3 psgnevpmb
 |-  ( D e. Fin -> ( ( _I |` D ) e. ( pmEven ` D ) <-> ( ( _I |` D ) e. ( Base ` S ) /\ ( ( pmSgn ` D ) ` ( _I |` D ) ) = 1 ) ) )
7 2 4 6 mpbir2and
 |-  ( D e. Fin -> ( _I |` D ) e. ( pmEven ` D ) )