Description: The identity is an even permutation. (Contributed by Thierry Arnoux, 18-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | evpmid.1 | |- S = ( SymGrp ` D ) | |
| Assertion | evpmid | |- ( D e. Fin -> ( _I |` D ) e. ( pmEven ` D ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | evpmid.1 | |- S = ( SymGrp ` D ) | |
| 2 | 1 | idresperm | |- ( D e. Fin -> ( _I |` D ) e. ( Base ` S ) ) | 
| 3 | eqid | |- ( pmSgn ` D ) = ( pmSgn ` D ) | |
| 4 | 3 | psgnid | |- ( D e. Fin -> ( ( pmSgn ` D ) ` ( _I |` D ) ) = 1 ) | 
| 5 | eqid | |- ( Base ` S ) = ( Base ` S ) | |
| 6 | 1 5 3 | psgnevpmb | |- ( D e. Fin -> ( ( _I |` D ) e. ( pmEven ` D ) <-> ( ( _I |` D ) e. ( Base ` S ) /\ ( ( pmSgn ` D ) ` ( _I |` D ) ) = 1 ) ) ) | 
| 7 | 2 4 6 | mpbir2and | |- ( D e. Fin -> ( _I |` D ) e. ( pmEven ` D ) ) |