| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnid.s |  |-  S = ( pmSgn ` D ) | 
						
							| 2 |  | eqid |  |-  ( SymGrp ` D ) = ( SymGrp ` D ) | 
						
							| 3 | 2 | symgid |  |-  ( D e. Fin -> ( _I |` D ) = ( 0g ` ( SymGrp ` D ) ) ) | 
						
							| 4 | 3 | fveq2d |  |-  ( D e. Fin -> ( S ` ( _I |` D ) ) = ( S ` ( 0g ` ( SymGrp ` D ) ) ) ) | 
						
							| 5 |  | eqid |  |-  ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) | 
						
							| 6 | 2 1 5 | psgnghm2 |  |-  ( D e. Fin -> S e. ( ( SymGrp ` D ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 7 |  | eqid |  |-  ( 0g ` ( SymGrp ` D ) ) = ( 0g ` ( SymGrp ` D ) ) | 
						
							| 8 |  | cnring |  |-  CCfld e. Ring | 
						
							| 9 |  | eqid |  |-  ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) | 
						
							| 10 | 9 | ringmgp |  |-  ( CCfld e. Ring -> ( mulGrp ` CCfld ) e. Mnd ) | 
						
							| 11 | 8 10 | ax-mp |  |-  ( mulGrp ` CCfld ) e. Mnd | 
						
							| 12 |  | 1ex |  |-  1 e. _V | 
						
							| 13 | 12 | prid1 |  |-  1 e. { 1 , -u 1 } | 
						
							| 14 |  | ax-1cn |  |-  1 e. CC | 
						
							| 15 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 16 |  | prssi |  |-  ( ( 1 e. CC /\ -u 1 e. CC ) -> { 1 , -u 1 } C_ CC ) | 
						
							| 17 | 14 15 16 | mp2an |  |-  { 1 , -u 1 } C_ CC | 
						
							| 18 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 19 | 9 18 | mgpbas |  |-  CC = ( Base ` ( mulGrp ` CCfld ) ) | 
						
							| 20 |  | cnfld1 |  |-  1 = ( 1r ` CCfld ) | 
						
							| 21 | 9 20 | ringidval |  |-  1 = ( 0g ` ( mulGrp ` CCfld ) ) | 
						
							| 22 | 5 19 21 | ress0g |  |-  ( ( ( mulGrp ` CCfld ) e. Mnd /\ 1 e. { 1 , -u 1 } /\ { 1 , -u 1 } C_ CC ) -> 1 = ( 0g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 23 | 11 13 17 22 | mp3an |  |-  1 = ( 0g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) | 
						
							| 24 | 7 23 | ghmid |  |-  ( S e. ( ( SymGrp ` D ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> ( S ` ( 0g ` ( SymGrp ` D ) ) ) = 1 ) | 
						
							| 25 | 6 24 | syl |  |-  ( D e. Fin -> ( S ` ( 0g ` ( SymGrp ` D ) ) ) = 1 ) | 
						
							| 26 | 4 25 | eqtrd |  |-  ( D e. Fin -> ( S ` ( _I |` D ) ) = 1 ) |