| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psgnid.s |
|- S = ( pmSgn ` D ) |
| 2 |
|
eqid |
|- ( SymGrp ` D ) = ( SymGrp ` D ) |
| 3 |
2
|
symgid |
|- ( D e. Fin -> ( _I |` D ) = ( 0g ` ( SymGrp ` D ) ) ) |
| 4 |
3
|
fveq2d |
|- ( D e. Fin -> ( S ` ( _I |` D ) ) = ( S ` ( 0g ` ( SymGrp ` D ) ) ) ) |
| 5 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
| 6 |
2 1 5
|
psgnghm2 |
|- ( D e. Fin -> S e. ( ( SymGrp ` D ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 7 |
|
eqid |
|- ( 0g ` ( SymGrp ` D ) ) = ( 0g ` ( SymGrp ` D ) ) |
| 8 |
|
cnring |
|- CCfld e. Ring |
| 9 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
| 10 |
9
|
ringmgp |
|- ( CCfld e. Ring -> ( mulGrp ` CCfld ) e. Mnd ) |
| 11 |
8 10
|
ax-mp |
|- ( mulGrp ` CCfld ) e. Mnd |
| 12 |
|
1ex |
|- 1 e. _V |
| 13 |
12
|
prid1 |
|- 1 e. { 1 , -u 1 } |
| 14 |
|
ax-1cn |
|- 1 e. CC |
| 15 |
|
neg1cn |
|- -u 1 e. CC |
| 16 |
|
prssi |
|- ( ( 1 e. CC /\ -u 1 e. CC ) -> { 1 , -u 1 } C_ CC ) |
| 17 |
14 15 16
|
mp2an |
|- { 1 , -u 1 } C_ CC |
| 18 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 19 |
9 18
|
mgpbas |
|- CC = ( Base ` ( mulGrp ` CCfld ) ) |
| 20 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
| 21 |
9 20
|
ringidval |
|- 1 = ( 0g ` ( mulGrp ` CCfld ) ) |
| 22 |
5 19 21
|
ress0g |
|- ( ( ( mulGrp ` CCfld ) e. Mnd /\ 1 e. { 1 , -u 1 } /\ { 1 , -u 1 } C_ CC ) -> 1 = ( 0g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 23 |
11 13 17 22
|
mp3an |
|- 1 = ( 0g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
| 24 |
7 23
|
ghmid |
|- ( S e. ( ( SymGrp ` D ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> ( S ` ( 0g ` ( SymGrp ` D ) ) ) = 1 ) |
| 25 |
6 24
|
syl |
|- ( D e. Fin -> ( S ` ( 0g ` ( SymGrp ` D ) ) ) = 1 ) |
| 26 |
4 25
|
eqtrd |
|- ( D e. Fin -> ( S ` ( _I |` D ) ) = 1 ) |