| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnid.s | ⊢ 𝑆  =  ( pmSgn ‘ 𝐷 ) | 
						
							| 2 |  | eqid | ⊢ ( SymGrp ‘ 𝐷 )  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 3 | 2 | symgid | ⊢ ( 𝐷  ∈  Fin  →  (  I   ↾  𝐷 )  =  ( 0g ‘ ( SymGrp ‘ 𝐷 ) ) ) | 
						
							| 4 | 3 | fveq2d | ⊢ ( 𝐷  ∈  Fin  →  ( 𝑆 ‘ (  I   ↾  𝐷 ) )  =  ( 𝑆 ‘ ( 0g ‘ ( SymGrp ‘ 𝐷 ) ) ) ) | 
						
							| 5 |  | eqid | ⊢ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } )  =  ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) | 
						
							| 6 | 2 1 5 | psgnghm2 | ⊢ ( 𝐷  ∈  Fin  →  𝑆  ∈  ( ( SymGrp ‘ 𝐷 )  GrpHom  ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( 0g ‘ ( SymGrp ‘ 𝐷 ) )  =  ( 0g ‘ ( SymGrp ‘ 𝐷 ) ) | 
						
							| 8 |  | cnring | ⊢ ℂfld  ∈  Ring | 
						
							| 9 |  | eqid | ⊢ ( mulGrp ‘ ℂfld )  =  ( mulGrp ‘ ℂfld ) | 
						
							| 10 | 9 | ringmgp | ⊢ ( ℂfld  ∈  Ring  →  ( mulGrp ‘ ℂfld )  ∈  Mnd ) | 
						
							| 11 | 8 10 | ax-mp | ⊢ ( mulGrp ‘ ℂfld )  ∈  Mnd | 
						
							| 12 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 13 | 12 | prid1 | ⊢ 1  ∈  { 1 ,  - 1 } | 
						
							| 14 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 15 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 16 |  | prssi | ⊢ ( ( 1  ∈  ℂ  ∧  - 1  ∈  ℂ )  →  { 1 ,  - 1 }  ⊆  ℂ ) | 
						
							| 17 | 14 15 16 | mp2an | ⊢ { 1 ,  - 1 }  ⊆  ℂ | 
						
							| 18 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 19 | 9 18 | mgpbas | ⊢ ℂ  =  ( Base ‘ ( mulGrp ‘ ℂfld ) ) | 
						
							| 20 |  | cnfld1 | ⊢ 1  =  ( 1r ‘ ℂfld ) | 
						
							| 21 | 9 20 | ringidval | ⊢ 1  =  ( 0g ‘ ( mulGrp ‘ ℂfld ) ) | 
						
							| 22 | 5 19 21 | ress0g | ⊢ ( ( ( mulGrp ‘ ℂfld )  ∈  Mnd  ∧  1  ∈  { 1 ,  - 1 }  ∧  { 1 ,  - 1 }  ⊆  ℂ )  →  1  =  ( 0g ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) ) | 
						
							| 23 | 11 13 17 22 | mp3an | ⊢ 1  =  ( 0g ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) | 
						
							| 24 | 7 23 | ghmid | ⊢ ( 𝑆  ∈  ( ( SymGrp ‘ 𝐷 )  GrpHom  ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) )  →  ( 𝑆 ‘ ( 0g ‘ ( SymGrp ‘ 𝐷 ) ) )  =  1 ) | 
						
							| 25 | 6 24 | syl | ⊢ ( 𝐷  ∈  Fin  →  ( 𝑆 ‘ ( 0g ‘ ( SymGrp ‘ 𝐷 ) ) )  =  1 ) | 
						
							| 26 | 4 25 | eqtrd | ⊢ ( 𝐷  ∈  Fin  →  ( 𝑆 ‘ (  I   ↾  𝐷 ) )  =  1 ) |