Metamath Proof Explorer


Theorem psgnid

Description: Permutation sign of the identity. (Contributed by Thierry Arnoux, 21-Aug-2020)

Ref Expression
Hypothesis psgnid.s 𝑆 = ( pmSgn ‘ 𝐷 )
Assertion psgnid ( 𝐷 ∈ Fin → ( 𝑆 ‘ ( I ↾ 𝐷 ) ) = 1 )

Proof

Step Hyp Ref Expression
1 psgnid.s 𝑆 = ( pmSgn ‘ 𝐷 )
2 eqid ( SymGrp ‘ 𝐷 ) = ( SymGrp ‘ 𝐷 )
3 2 symgid ( 𝐷 ∈ Fin → ( I ↾ 𝐷 ) = ( 0g ‘ ( SymGrp ‘ 𝐷 ) ) )
4 3 fveq2d ( 𝐷 ∈ Fin → ( 𝑆 ‘ ( I ↾ 𝐷 ) ) = ( 𝑆 ‘ ( 0g ‘ ( SymGrp ‘ 𝐷 ) ) ) )
5 eqid ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } )
6 2 1 5 psgnghm2 ( 𝐷 ∈ Fin → 𝑆 ∈ ( ( SymGrp ‘ 𝐷 ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) )
7 eqid ( 0g ‘ ( SymGrp ‘ 𝐷 ) ) = ( 0g ‘ ( SymGrp ‘ 𝐷 ) )
8 cnring fld ∈ Ring
9 eqid ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld )
10 9 ringmgp ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd )
11 8 10 ax-mp ( mulGrp ‘ ℂfld ) ∈ Mnd
12 1ex 1 ∈ V
13 12 prid1 1 ∈ { 1 , - 1 }
14 ax-1cn 1 ∈ ℂ
15 neg1cn - 1 ∈ ℂ
16 prssi ( ( 1 ∈ ℂ ∧ - 1 ∈ ℂ ) → { 1 , - 1 } ⊆ ℂ )
17 14 15 16 mp2an { 1 , - 1 } ⊆ ℂ
18 cnfldbas ℂ = ( Base ‘ ℂfld )
19 9 18 mgpbas ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) )
20 cnfld1 1 = ( 1r ‘ ℂfld )
21 9 20 ringidval 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) )
22 5 19 21 ress0g ( ( ( mulGrp ‘ ℂfld ) ∈ Mnd ∧ 1 ∈ { 1 , - 1 } ∧ { 1 , - 1 } ⊆ ℂ ) → 1 = ( 0g ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) )
23 11 13 17 22 mp3an 1 = ( 0g ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) )
24 7 23 ghmid ( 𝑆 ∈ ( ( SymGrp ‘ 𝐷 ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → ( 𝑆 ‘ ( 0g ‘ ( SymGrp ‘ 𝐷 ) ) ) = 1 )
25 6 24 syl ( 𝐷 ∈ Fin → ( 𝑆 ‘ ( 0g ‘ ( SymGrp ‘ 𝐷 ) ) ) = 1 )
26 4 25 eqtrd ( 𝐷 ∈ Fin → ( 𝑆 ‘ ( I ↾ 𝐷 ) ) = 1 )