| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psgnid.s |
⊢ 𝑆 = ( pmSgn ‘ 𝐷 ) |
| 2 |
|
eqid |
⊢ ( SymGrp ‘ 𝐷 ) = ( SymGrp ‘ 𝐷 ) |
| 3 |
2
|
symgid |
⊢ ( 𝐷 ∈ Fin → ( I ↾ 𝐷 ) = ( 0g ‘ ( SymGrp ‘ 𝐷 ) ) ) |
| 4 |
3
|
fveq2d |
⊢ ( 𝐷 ∈ Fin → ( 𝑆 ‘ ( I ↾ 𝐷 ) ) = ( 𝑆 ‘ ( 0g ‘ ( SymGrp ‘ 𝐷 ) ) ) ) |
| 5 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) |
| 6 |
2 1 5
|
psgnghm2 |
⊢ ( 𝐷 ∈ Fin → 𝑆 ∈ ( ( SymGrp ‘ 𝐷 ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 7 |
|
eqid |
⊢ ( 0g ‘ ( SymGrp ‘ 𝐷 ) ) = ( 0g ‘ ( SymGrp ‘ 𝐷 ) ) |
| 8 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 9 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
| 10 |
9
|
ringmgp |
⊢ ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
| 11 |
8 10
|
ax-mp |
⊢ ( mulGrp ‘ ℂfld ) ∈ Mnd |
| 12 |
|
1ex |
⊢ 1 ∈ V |
| 13 |
12
|
prid1 |
⊢ 1 ∈ { 1 , - 1 } |
| 14 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 15 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 16 |
|
prssi |
⊢ ( ( 1 ∈ ℂ ∧ - 1 ∈ ℂ ) → { 1 , - 1 } ⊆ ℂ ) |
| 17 |
14 15 16
|
mp2an |
⊢ { 1 , - 1 } ⊆ ℂ |
| 18 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 19 |
9 18
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
| 20 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
| 21 |
9 20
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
| 22 |
5 19 21
|
ress0g |
⊢ ( ( ( mulGrp ‘ ℂfld ) ∈ Mnd ∧ 1 ∈ { 1 , - 1 } ∧ { 1 , - 1 } ⊆ ℂ ) → 1 = ( 0g ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 23 |
11 13 17 22
|
mp3an |
⊢ 1 = ( 0g ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) |
| 24 |
7 23
|
ghmid |
⊢ ( 𝑆 ∈ ( ( SymGrp ‘ 𝐷 ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → ( 𝑆 ‘ ( 0g ‘ ( SymGrp ‘ 𝐷 ) ) ) = 1 ) |
| 25 |
6 24
|
syl |
⊢ ( 𝐷 ∈ Fin → ( 𝑆 ‘ ( 0g ‘ ( SymGrp ‘ 𝐷 ) ) ) = 1 ) |
| 26 |
4 25
|
eqtrd |
⊢ ( 𝐷 ∈ Fin → ( 𝑆 ‘ ( I ↾ 𝐷 ) ) = 1 ) |