Step |
Hyp |
Ref |
Expression |
1 |
|
psgndmfi.s |
⊢ 𝑆 = ( pmSgn ‘ 𝐷 ) |
2 |
|
psgndmfi.g |
⊢ 𝐺 = ( Base ‘ ( SymGrp ‘ 𝐷 ) ) |
3 |
|
eqid |
⊢ ( SymGrp ‘ 𝐷 ) = ( SymGrp ‘ 𝐷 ) |
4 |
|
eqid |
⊢ { 𝑝 ∈ 𝐺 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = { 𝑝 ∈ 𝐺 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } |
5 |
3 2 4 1
|
psgnfn |
⊢ 𝑆 Fn { 𝑝 ∈ 𝐺 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } |
6 |
3 2
|
sygbasnfpfi |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐺 ) → dom ( 𝑝 ∖ I ) ∈ Fin ) |
7 |
6
|
ralrimiva |
⊢ ( 𝐷 ∈ Fin → ∀ 𝑝 ∈ 𝐺 dom ( 𝑝 ∖ I ) ∈ Fin ) |
8 |
|
rabid2 |
⊢ ( 𝐺 = { 𝑝 ∈ 𝐺 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ↔ ∀ 𝑝 ∈ 𝐺 dom ( 𝑝 ∖ I ) ∈ Fin ) |
9 |
7 8
|
sylibr |
⊢ ( 𝐷 ∈ Fin → 𝐺 = { 𝑝 ∈ 𝐺 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ) |
10 |
9
|
eqcomd |
⊢ ( 𝐷 ∈ Fin → { 𝑝 ∈ 𝐺 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = 𝐺 ) |
11 |
10
|
fneq2d |
⊢ ( 𝐷 ∈ Fin → ( 𝑆 Fn { 𝑝 ∈ 𝐺 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ↔ 𝑆 Fn 𝐺 ) ) |
12 |
5 11
|
mpbii |
⊢ ( 𝐷 ∈ Fin → 𝑆 Fn 𝐺 ) |