Metamath Proof Explorer


Theorem psgndmfi

Description: For a finite base set, the permutation sign is defined for all permutations. (Contributed by Thierry Arnoux, 22-Aug-2020)

Ref Expression
Hypotheses psgndmfi.s 𝑆 = ( pmSgn ‘ 𝐷 )
psgndmfi.g 𝐺 = ( Base ‘ ( SymGrp ‘ 𝐷 ) )
Assertion psgndmfi ( 𝐷 ∈ Fin → 𝑆 Fn 𝐺 )

Proof

Step Hyp Ref Expression
1 psgndmfi.s 𝑆 = ( pmSgn ‘ 𝐷 )
2 psgndmfi.g 𝐺 = ( Base ‘ ( SymGrp ‘ 𝐷 ) )
3 eqid ( SymGrp ‘ 𝐷 ) = ( SymGrp ‘ 𝐷 )
4 eqid { 𝑝𝐺 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = { 𝑝𝐺 ∣ dom ( 𝑝 ∖ I ) ∈ Fin }
5 3 2 4 1 psgnfn 𝑆 Fn { 𝑝𝐺 ∣ dom ( 𝑝 ∖ I ) ∈ Fin }
6 3 2 sygbasnfpfi ( ( 𝐷 ∈ Fin ∧ 𝑝𝐺 ) → dom ( 𝑝 ∖ I ) ∈ Fin )
7 6 ralrimiva ( 𝐷 ∈ Fin → ∀ 𝑝𝐺 dom ( 𝑝 ∖ I ) ∈ Fin )
8 rabid2 ( 𝐺 = { 𝑝𝐺 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ↔ ∀ 𝑝𝐺 dom ( 𝑝 ∖ I ) ∈ Fin )
9 7 8 sylibr ( 𝐷 ∈ Fin → 𝐺 = { 𝑝𝐺 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } )
10 9 eqcomd ( 𝐷 ∈ Fin → { 𝑝𝐺 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = 𝐺 )
11 10 fneq2d ( 𝐷 ∈ Fin → ( 𝑆 Fn { 𝑝𝐺 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ↔ 𝑆 Fn 𝐺 ) )
12 5 11 mpbii ( 𝐷 ∈ Fin → 𝑆 Fn 𝐺 )