| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgndmfi.s | ⊢ 𝑆  =  ( pmSgn ‘ 𝐷 ) | 
						
							| 2 |  | psgndmfi.g | ⊢ 𝐺  =  ( Base ‘ ( SymGrp ‘ 𝐷 ) ) | 
						
							| 3 |  | eqid | ⊢ ( SymGrp ‘ 𝐷 )  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 4 |  | eqid | ⊢ { 𝑝  ∈  𝐺  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin }  =  { 𝑝  ∈  𝐺  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin } | 
						
							| 5 | 3 2 4 1 | psgnfn | ⊢ 𝑆  Fn  { 𝑝  ∈  𝐺  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin } | 
						
							| 6 | 3 2 | sygbasnfpfi | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑝  ∈  𝐺 )  →  dom  ( 𝑝  ∖   I  )  ∈  Fin ) | 
						
							| 7 | 6 | ralrimiva | ⊢ ( 𝐷  ∈  Fin  →  ∀ 𝑝  ∈  𝐺 dom  ( 𝑝  ∖   I  )  ∈  Fin ) | 
						
							| 8 |  | rabid2 | ⊢ ( 𝐺  =  { 𝑝  ∈  𝐺  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin }  ↔  ∀ 𝑝  ∈  𝐺 dom  ( 𝑝  ∖   I  )  ∈  Fin ) | 
						
							| 9 | 7 8 | sylibr | ⊢ ( 𝐷  ∈  Fin  →  𝐺  =  { 𝑝  ∈  𝐺  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin } ) | 
						
							| 10 | 9 | eqcomd | ⊢ ( 𝐷  ∈  Fin  →  { 𝑝  ∈  𝐺  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin }  =  𝐺 ) | 
						
							| 11 | 10 | fneq2d | ⊢ ( 𝐷  ∈  Fin  →  ( 𝑆  Fn  { 𝑝  ∈  𝐺  ∣  dom  ( 𝑝  ∖   I  )  ∈  Fin }  ↔  𝑆  Fn  𝐺 ) ) | 
						
							| 12 | 5 11 | mpbii | ⊢ ( 𝐷  ∈  Fin  →  𝑆  Fn  𝐺 ) |