| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfzto1st.d | ⊢ 𝐷  =  ( 1 ... 𝑁 ) | 
						
							| 2 |  | pmtrto1cl.t | ⊢ 𝑇  =  ( pmTrsp ‘ 𝐷 ) | 
						
							| 3 |  | fzfi | ⊢ ( 1 ... 𝑁 )  ∈  Fin | 
						
							| 4 | 1 3 | eqeltri | ⊢ 𝐷  ∈  Fin | 
						
							| 5 | 4 | a1i | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝐾  +  1 )  ∈  𝐷 )  →  𝐷  ∈  Fin ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝐾  +  1 )  ∈  𝐷 )  →  𝐾  ∈  ℕ ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝐾  +  1 )  ∈  𝐷 )  →  ( 𝐾  +  1 )  ∈  𝐷 ) | 
						
							| 8 | 7 1 | eleqtrdi | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝐾  +  1 )  ∈  𝐷 )  →  ( 𝐾  +  1 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 9 |  | elfz1b | ⊢ ( ( 𝐾  +  1 )  ∈  ( 1 ... 𝑁 )  ↔  ( ( 𝐾  +  1 )  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  ( 𝐾  +  1 )  ≤  𝑁 ) ) | 
						
							| 10 | 8 9 | sylib | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝐾  +  1 )  ∈  𝐷 )  →  ( ( 𝐾  +  1 )  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  ( 𝐾  +  1 )  ≤  𝑁 ) ) | 
						
							| 11 | 10 | simp2d | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝐾  +  1 )  ∈  𝐷 )  →  𝑁  ∈  ℕ ) | 
						
							| 12 | 6 | nnred | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝐾  +  1 )  ∈  𝐷 )  →  𝐾  ∈  ℝ ) | 
						
							| 13 |  | 1red | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝐾  +  1 )  ∈  𝐷 )  →  1  ∈  ℝ ) | 
						
							| 14 | 12 13 | readdcld | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝐾  +  1 )  ∈  𝐷 )  →  ( 𝐾  +  1 )  ∈  ℝ ) | 
						
							| 15 | 11 | nnred | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝐾  +  1 )  ∈  𝐷 )  →  𝑁  ∈  ℝ ) | 
						
							| 16 | 12 | lep1d | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝐾  +  1 )  ∈  𝐷 )  →  𝐾  ≤  ( 𝐾  +  1 ) ) | 
						
							| 17 | 10 | simp3d | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝐾  +  1 )  ∈  𝐷 )  →  ( 𝐾  +  1 )  ≤  𝑁 ) | 
						
							| 18 | 12 14 15 16 17 | letrd | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝐾  +  1 )  ∈  𝐷 )  →  𝐾  ≤  𝑁 ) | 
						
							| 19 | 6 11 18 | 3jca | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝐾  +  1 )  ∈  𝐷 )  →  ( 𝐾  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  𝐾  ≤  𝑁 ) ) | 
						
							| 20 |  | elfz1b | ⊢ ( 𝐾  ∈  ( 1 ... 𝑁 )  ↔  ( 𝐾  ∈  ℕ  ∧  𝑁  ∈  ℕ  ∧  𝐾  ≤  𝑁 ) ) | 
						
							| 21 | 19 20 | sylibr | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝐾  +  1 )  ∈  𝐷 )  →  𝐾  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 22 | 21 1 | eleqtrrdi | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝐾  +  1 )  ∈  𝐷 )  →  𝐾  ∈  𝐷 ) | 
						
							| 23 |  | prssi | ⊢ ( ( 𝐾  ∈  𝐷  ∧  ( 𝐾  +  1 )  ∈  𝐷 )  →  { 𝐾 ,  ( 𝐾  +  1 ) }  ⊆  𝐷 ) | 
						
							| 24 | 22 7 23 | syl2anc | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝐾  +  1 )  ∈  𝐷 )  →  { 𝐾 ,  ( 𝐾  +  1 ) }  ⊆  𝐷 ) | 
						
							| 25 | 12 | ltp1d | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝐾  +  1 )  ∈  𝐷 )  →  𝐾  <  ( 𝐾  +  1 ) ) | 
						
							| 26 | 12 25 | ltned | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝐾  +  1 )  ∈  𝐷 )  →  𝐾  ≠  ( 𝐾  +  1 ) ) | 
						
							| 27 |  | enpr2 | ⊢ ( ( 𝐾  ∈  𝐷  ∧  ( 𝐾  +  1 )  ∈  𝐷  ∧  𝐾  ≠  ( 𝐾  +  1 ) )  →  { 𝐾 ,  ( 𝐾  +  1 ) }  ≈  2o ) | 
						
							| 28 | 22 7 26 27 | syl3anc | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝐾  +  1 )  ∈  𝐷 )  →  { 𝐾 ,  ( 𝐾  +  1 ) }  ≈  2o ) | 
						
							| 29 |  | eqid | ⊢ ran  𝑇  =  ran  𝑇 | 
						
							| 30 | 2 29 | pmtrrn | ⊢ ( ( 𝐷  ∈  Fin  ∧  { 𝐾 ,  ( 𝐾  +  1 ) }  ⊆  𝐷  ∧  { 𝐾 ,  ( 𝐾  +  1 ) }  ≈  2o )  →  ( 𝑇 ‘ { 𝐾 ,  ( 𝐾  +  1 ) } )  ∈  ran  𝑇 ) | 
						
							| 31 | 5 24 28 30 | syl3anc | ⊢ ( ( 𝐾  ∈  ℕ  ∧  ( 𝐾  +  1 )  ∈  𝐷 )  →  ( 𝑇 ‘ { 𝐾 ,  ( 𝐾  +  1 ) } )  ∈  ran  𝑇 ) |