| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psgnfzto1st.d |
⊢ 𝐷 = ( 1 ... 𝑁 ) |
| 2 |
|
pmtrto1cl.t |
⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) |
| 3 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
| 4 |
1 3
|
eqeltri |
⊢ 𝐷 ∈ Fin |
| 5 |
4
|
a1i |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝐾 + 1 ) ∈ 𝐷 ) → 𝐷 ∈ Fin ) |
| 6 |
|
simpl |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝐾 + 1 ) ∈ 𝐷 ) → 𝐾 ∈ ℕ ) |
| 7 |
|
simpr |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝐾 + 1 ) ∈ 𝐷 ) → ( 𝐾 + 1 ) ∈ 𝐷 ) |
| 8 |
7 1
|
eleqtrdi |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝐾 + 1 ) ∈ 𝐷 ) → ( 𝐾 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 9 |
|
elfz1b |
⊢ ( ( 𝐾 + 1 ) ∈ ( 1 ... 𝑁 ) ↔ ( ( 𝐾 + 1 ) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝐾 + 1 ) ≤ 𝑁 ) ) |
| 10 |
8 9
|
sylib |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝐾 + 1 ) ∈ 𝐷 ) → ( ( 𝐾 + 1 ) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝐾 + 1 ) ≤ 𝑁 ) ) |
| 11 |
10
|
simp2d |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝐾 + 1 ) ∈ 𝐷 ) → 𝑁 ∈ ℕ ) |
| 12 |
6
|
nnred |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝐾 + 1 ) ∈ 𝐷 ) → 𝐾 ∈ ℝ ) |
| 13 |
|
1red |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝐾 + 1 ) ∈ 𝐷 ) → 1 ∈ ℝ ) |
| 14 |
12 13
|
readdcld |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝐾 + 1 ) ∈ 𝐷 ) → ( 𝐾 + 1 ) ∈ ℝ ) |
| 15 |
11
|
nnred |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝐾 + 1 ) ∈ 𝐷 ) → 𝑁 ∈ ℝ ) |
| 16 |
12
|
lep1d |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝐾 + 1 ) ∈ 𝐷 ) → 𝐾 ≤ ( 𝐾 + 1 ) ) |
| 17 |
10
|
simp3d |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝐾 + 1 ) ∈ 𝐷 ) → ( 𝐾 + 1 ) ≤ 𝑁 ) |
| 18 |
12 14 15 16 17
|
letrd |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝐾 + 1 ) ∈ 𝐷 ) → 𝐾 ≤ 𝑁 ) |
| 19 |
6 11 18
|
3jca |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝐾 + 1 ) ∈ 𝐷 ) → ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁 ) ) |
| 20 |
|
elfz1b |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) ↔ ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁 ) ) |
| 21 |
19 20
|
sylibr |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝐾 + 1 ) ∈ 𝐷 ) → 𝐾 ∈ ( 1 ... 𝑁 ) ) |
| 22 |
21 1
|
eleqtrrdi |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝐾 + 1 ) ∈ 𝐷 ) → 𝐾 ∈ 𝐷 ) |
| 23 |
|
prssi |
⊢ ( ( 𝐾 ∈ 𝐷 ∧ ( 𝐾 + 1 ) ∈ 𝐷 ) → { 𝐾 , ( 𝐾 + 1 ) } ⊆ 𝐷 ) |
| 24 |
22 7 23
|
syl2anc |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝐾 + 1 ) ∈ 𝐷 ) → { 𝐾 , ( 𝐾 + 1 ) } ⊆ 𝐷 ) |
| 25 |
12
|
ltp1d |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝐾 + 1 ) ∈ 𝐷 ) → 𝐾 < ( 𝐾 + 1 ) ) |
| 26 |
12 25
|
ltned |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝐾 + 1 ) ∈ 𝐷 ) → 𝐾 ≠ ( 𝐾 + 1 ) ) |
| 27 |
|
enpr2 |
⊢ ( ( 𝐾 ∈ 𝐷 ∧ ( 𝐾 + 1 ) ∈ 𝐷 ∧ 𝐾 ≠ ( 𝐾 + 1 ) ) → { 𝐾 , ( 𝐾 + 1 ) } ≈ 2o ) |
| 28 |
22 7 26 27
|
syl3anc |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝐾 + 1 ) ∈ 𝐷 ) → { 𝐾 , ( 𝐾 + 1 ) } ≈ 2o ) |
| 29 |
|
eqid |
⊢ ran 𝑇 = ran 𝑇 |
| 30 |
2 29
|
pmtrrn |
⊢ ( ( 𝐷 ∈ Fin ∧ { 𝐾 , ( 𝐾 + 1 ) } ⊆ 𝐷 ∧ { 𝐾 , ( 𝐾 + 1 ) } ≈ 2o ) → ( 𝑇 ‘ { 𝐾 , ( 𝐾 + 1 ) } ) ∈ ran 𝑇 ) |
| 31 |
5 24 28 30
|
syl3anc |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝐾 + 1 ) ∈ 𝐷 ) → ( 𝑇 ‘ { 𝐾 , ( 𝐾 + 1 ) } ) ∈ ran 𝑇 ) |