| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfzto1st.d |  |-  D = ( 1 ... N ) | 
						
							| 2 |  | pmtrto1cl.t |  |-  T = ( pmTrsp ` D ) | 
						
							| 3 |  | fzfi |  |-  ( 1 ... N ) e. Fin | 
						
							| 4 | 1 3 | eqeltri |  |-  D e. Fin | 
						
							| 5 | 4 | a1i |  |-  ( ( K e. NN /\ ( K + 1 ) e. D ) -> D e. Fin ) | 
						
							| 6 |  | simpl |  |-  ( ( K e. NN /\ ( K + 1 ) e. D ) -> K e. NN ) | 
						
							| 7 |  | simpr |  |-  ( ( K e. NN /\ ( K + 1 ) e. D ) -> ( K + 1 ) e. D ) | 
						
							| 8 | 7 1 | eleqtrdi |  |-  ( ( K e. NN /\ ( K + 1 ) e. D ) -> ( K + 1 ) e. ( 1 ... N ) ) | 
						
							| 9 |  | elfz1b |  |-  ( ( K + 1 ) e. ( 1 ... N ) <-> ( ( K + 1 ) e. NN /\ N e. NN /\ ( K + 1 ) <_ N ) ) | 
						
							| 10 | 8 9 | sylib |  |-  ( ( K e. NN /\ ( K + 1 ) e. D ) -> ( ( K + 1 ) e. NN /\ N e. NN /\ ( K + 1 ) <_ N ) ) | 
						
							| 11 | 10 | simp2d |  |-  ( ( K e. NN /\ ( K + 1 ) e. D ) -> N e. NN ) | 
						
							| 12 | 6 | nnred |  |-  ( ( K e. NN /\ ( K + 1 ) e. D ) -> K e. RR ) | 
						
							| 13 |  | 1red |  |-  ( ( K e. NN /\ ( K + 1 ) e. D ) -> 1 e. RR ) | 
						
							| 14 | 12 13 | readdcld |  |-  ( ( K e. NN /\ ( K + 1 ) e. D ) -> ( K + 1 ) e. RR ) | 
						
							| 15 | 11 | nnred |  |-  ( ( K e. NN /\ ( K + 1 ) e. D ) -> N e. RR ) | 
						
							| 16 | 12 | lep1d |  |-  ( ( K e. NN /\ ( K + 1 ) e. D ) -> K <_ ( K + 1 ) ) | 
						
							| 17 | 10 | simp3d |  |-  ( ( K e. NN /\ ( K + 1 ) e. D ) -> ( K + 1 ) <_ N ) | 
						
							| 18 | 12 14 15 16 17 | letrd |  |-  ( ( K e. NN /\ ( K + 1 ) e. D ) -> K <_ N ) | 
						
							| 19 | 6 11 18 | 3jca |  |-  ( ( K e. NN /\ ( K + 1 ) e. D ) -> ( K e. NN /\ N e. NN /\ K <_ N ) ) | 
						
							| 20 |  | elfz1b |  |-  ( K e. ( 1 ... N ) <-> ( K e. NN /\ N e. NN /\ K <_ N ) ) | 
						
							| 21 | 19 20 | sylibr |  |-  ( ( K e. NN /\ ( K + 1 ) e. D ) -> K e. ( 1 ... N ) ) | 
						
							| 22 | 21 1 | eleqtrrdi |  |-  ( ( K e. NN /\ ( K + 1 ) e. D ) -> K e. D ) | 
						
							| 23 |  | prssi |  |-  ( ( K e. D /\ ( K + 1 ) e. D ) -> { K , ( K + 1 ) } C_ D ) | 
						
							| 24 | 22 7 23 | syl2anc |  |-  ( ( K e. NN /\ ( K + 1 ) e. D ) -> { K , ( K + 1 ) } C_ D ) | 
						
							| 25 | 12 | ltp1d |  |-  ( ( K e. NN /\ ( K + 1 ) e. D ) -> K < ( K + 1 ) ) | 
						
							| 26 | 12 25 | ltned |  |-  ( ( K e. NN /\ ( K + 1 ) e. D ) -> K =/= ( K + 1 ) ) | 
						
							| 27 |  | enpr2 |  |-  ( ( K e. D /\ ( K + 1 ) e. D /\ K =/= ( K + 1 ) ) -> { K , ( K + 1 ) } ~~ 2o ) | 
						
							| 28 | 22 7 26 27 | syl3anc |  |-  ( ( K e. NN /\ ( K + 1 ) e. D ) -> { K , ( K + 1 ) } ~~ 2o ) | 
						
							| 29 |  | eqid |  |-  ran T = ran T | 
						
							| 30 | 2 29 | pmtrrn |  |-  ( ( D e. Fin /\ { K , ( K + 1 ) } C_ D /\ { K , ( K + 1 ) } ~~ 2o ) -> ( T ` { K , ( K + 1 ) } ) e. ran T ) | 
						
							| 31 | 5 24 28 30 | syl3anc |  |-  ( ( K e. NN /\ ( K + 1 ) e. D ) -> ( T ` { K , ( K + 1 ) } ) e. ran T ) |