Metamath Proof Explorer


Theorem pmtrto1cl

Description: Useful lemma for the following theorems. (Contributed by Thierry Arnoux, 21-Aug-2020)

Ref Expression
Hypotheses psgnfzto1st.d D = 1 N
pmtrto1cl.t T = pmTrsp D
Assertion pmtrto1cl K K + 1 D T K K + 1 ran T

Proof

Step Hyp Ref Expression
1 psgnfzto1st.d D = 1 N
2 pmtrto1cl.t T = pmTrsp D
3 fzfi 1 N Fin
4 1 3 eqeltri D Fin
5 4 a1i K K + 1 D D Fin
6 simpl K K + 1 D K
7 simpr K K + 1 D K + 1 D
8 7 1 eleqtrdi K K + 1 D K + 1 1 N
9 elfz1b K + 1 1 N K + 1 N K + 1 N
10 8 9 sylib K K + 1 D K + 1 N K + 1 N
11 10 simp2d K K + 1 D N
12 6 nnred K K + 1 D K
13 1red K K + 1 D 1
14 12 13 readdcld K K + 1 D K + 1
15 11 nnred K K + 1 D N
16 12 lep1d K K + 1 D K K + 1
17 10 simp3d K K + 1 D K + 1 N
18 12 14 15 16 17 letrd K K + 1 D K N
19 6 11 18 3jca K K + 1 D K N K N
20 elfz1b K 1 N K N K N
21 19 20 sylibr K K + 1 D K 1 N
22 21 1 eleqtrrdi K K + 1 D K D
23 prssi K D K + 1 D K K + 1 D
24 22 7 23 syl2anc K K + 1 D K K + 1 D
25 12 ltp1d K K + 1 D K < K + 1
26 12 25 ltned K K + 1 D K K + 1
27 pr2nelem K D K + 1 D K K + 1 K K + 1 2 𝑜
28 22 7 26 27 syl3anc K K + 1 D K K + 1 2 𝑜
29 eqid ran T = ran T
30 2 29 pmtrrn D Fin K K + 1 D K K + 1 2 𝑜 T K K + 1 ran T
31 5 24 28 30 syl3anc K K + 1 D T K K + 1 ran T