Metamath Proof Explorer


Theorem psgndmfi

Description: For a finite base set, the permutation sign is defined for all permutations. (Contributed by Thierry Arnoux, 22-Aug-2020)

Ref Expression
Hypotheses psgndmfi.s
|- S = ( pmSgn ` D )
psgndmfi.g
|- G = ( Base ` ( SymGrp ` D ) )
Assertion psgndmfi
|- ( D e. Fin -> S Fn G )

Proof

Step Hyp Ref Expression
1 psgndmfi.s
 |-  S = ( pmSgn ` D )
2 psgndmfi.g
 |-  G = ( Base ` ( SymGrp ` D ) )
3 eqid
 |-  ( SymGrp ` D ) = ( SymGrp ` D )
4 eqid
 |-  { p e. G | dom ( p \ _I ) e. Fin } = { p e. G | dom ( p \ _I ) e. Fin }
5 3 2 4 1 psgnfn
 |-  S Fn { p e. G | dom ( p \ _I ) e. Fin }
6 3 2 sygbasnfpfi
 |-  ( ( D e. Fin /\ p e. G ) -> dom ( p \ _I ) e. Fin )
7 6 ralrimiva
 |-  ( D e. Fin -> A. p e. G dom ( p \ _I ) e. Fin )
8 rabid2
 |-  ( G = { p e. G | dom ( p \ _I ) e. Fin } <-> A. p e. G dom ( p \ _I ) e. Fin )
9 7 8 sylibr
 |-  ( D e. Fin -> G = { p e. G | dom ( p \ _I ) e. Fin } )
10 9 eqcomd
 |-  ( D e. Fin -> { p e. G | dom ( p \ _I ) e. Fin } = G )
11 10 fneq2d
 |-  ( D e. Fin -> ( S Fn { p e. G | dom ( p \ _I ) e. Fin } <-> S Fn G ) )
12 5 11 mpbii
 |-  ( D e. Fin -> S Fn G )