Description: The identity is an even permutation. (Contributed by Thierry Arnoux, 18-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | evpmid.1 | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | |
| Assertion | evpmid | ⊢ ( 𝐷 ∈ Fin → ( I ↾ 𝐷 ) ∈ ( pmEven ‘ 𝐷 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | evpmid.1 | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | |
| 2 | 1 | idresperm | ⊢ ( 𝐷 ∈ Fin → ( I ↾ 𝐷 ) ∈ ( Base ‘ 𝑆 ) ) | 
| 3 | eqid | ⊢ ( pmSgn ‘ 𝐷 ) = ( pmSgn ‘ 𝐷 ) | |
| 4 | 3 | psgnid | ⊢ ( 𝐷 ∈ Fin → ( ( pmSgn ‘ 𝐷 ) ‘ ( I ↾ 𝐷 ) ) = 1 ) | 
| 5 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 6 | 1 5 3 | psgnevpmb | ⊢ ( 𝐷 ∈ Fin → ( ( I ↾ 𝐷 ) ∈ ( pmEven ‘ 𝐷 ) ↔ ( ( I ↾ 𝐷 ) ∈ ( Base ‘ 𝑆 ) ∧ ( ( pmSgn ‘ 𝐷 ) ‘ ( I ↾ 𝐷 ) ) = 1 ) ) ) | 
| 7 | 2 4 6 | mpbir2and | ⊢ ( 𝐷 ∈ Fin → ( I ↾ 𝐷 ) ∈ ( pmEven ‘ 𝐷 ) ) |