| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evpmid.1 | ⊢ 𝑆  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 2 |  | elex | ⊢ ( 𝐷  ∈  Fin  →  𝐷  ∈  V ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑑  =  𝐷  →  ( pmSgn ‘ 𝑑 )  =  ( pmSgn ‘ 𝐷 ) ) | 
						
							| 4 | 3 | cnveqd | ⊢ ( 𝑑  =  𝐷  →  ◡ ( pmSgn ‘ 𝑑 )  =  ◡ ( pmSgn ‘ 𝐷 ) ) | 
						
							| 5 | 4 | imaeq1d | ⊢ ( 𝑑  =  𝐷  →  ( ◡ ( pmSgn ‘ 𝑑 )  “  { 1 } )  =  ( ◡ ( pmSgn ‘ 𝐷 )  “  { 1 } ) ) | 
						
							| 6 |  | df-evpm | ⊢ pmEven  =  ( 𝑑  ∈  V  ↦  ( ◡ ( pmSgn ‘ 𝑑 )  “  { 1 } ) ) | 
						
							| 7 |  | fvex | ⊢ ( pmSgn ‘ 𝐷 )  ∈  V | 
						
							| 8 | 7 | cnvex | ⊢ ◡ ( pmSgn ‘ 𝐷 )  ∈  V | 
						
							| 9 | 8 | imaex | ⊢ ( ◡ ( pmSgn ‘ 𝐷 )  “  { 1 } )  ∈  V | 
						
							| 10 | 5 6 9 | fvmpt | ⊢ ( 𝐷  ∈  V  →  ( pmEven ‘ 𝐷 )  =  ( ◡ ( pmSgn ‘ 𝐷 )  “  { 1 } ) ) | 
						
							| 11 | 2 10 | syl | ⊢ ( 𝐷  ∈  Fin  →  ( pmEven ‘ 𝐷 )  =  ( ◡ ( pmSgn ‘ 𝐷 )  “  { 1 } ) ) | 
						
							| 12 |  | eqid | ⊢ ( pmSgn ‘ 𝐷 )  =  ( pmSgn ‘ 𝐷 ) | 
						
							| 13 |  | eqid | ⊢ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } )  =  ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) | 
						
							| 14 | 1 12 13 | psgnghm2 | ⊢ ( 𝐷  ∈  Fin  →  ( pmSgn ‘ 𝐷 )  ∈  ( 𝑆  GrpHom  ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) ) | 
						
							| 15 |  | cnring | ⊢ ℂfld  ∈  Ring | 
						
							| 16 |  | eqid | ⊢ ( mulGrp ‘ ℂfld )  =  ( mulGrp ‘ ℂfld ) | 
						
							| 17 | 16 | ringmgp | ⊢ ( ℂfld  ∈  Ring  →  ( mulGrp ‘ ℂfld )  ∈  Mnd ) | 
						
							| 18 | 15 17 | ax-mp | ⊢ ( mulGrp ‘ ℂfld )  ∈  Mnd | 
						
							| 19 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 20 |  | prid1g | ⊢ ( 1  ∈  ℂ  →  1  ∈  { 1 ,  - 1 } ) | 
						
							| 21 | 19 20 | ax-mp | ⊢ 1  ∈  { 1 ,  - 1 } | 
						
							| 22 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 23 |  | prssi | ⊢ ( ( 1  ∈  ℂ  ∧  - 1  ∈  ℂ )  →  { 1 ,  - 1 }  ⊆  ℂ ) | 
						
							| 24 | 19 22 23 | mp2an | ⊢ { 1 ,  - 1 }  ⊆  ℂ | 
						
							| 25 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 26 | 16 25 | mgpbas | ⊢ ℂ  =  ( Base ‘ ( mulGrp ‘ ℂfld ) ) | 
						
							| 27 |  | cnfld1 | ⊢ 1  =  ( 1r ‘ ℂfld ) | 
						
							| 28 | 16 27 | ringidval | ⊢ 1  =  ( 0g ‘ ( mulGrp ‘ ℂfld ) ) | 
						
							| 29 | 13 26 28 | ress0g | ⊢ ( ( ( mulGrp ‘ ℂfld )  ∈  Mnd  ∧  1  ∈  { 1 ,  - 1 }  ∧  { 1 ,  - 1 }  ⊆  ℂ )  →  1  =  ( 0g ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) ) | 
						
							| 30 | 18 21 24 29 | mp3an | ⊢ 1  =  ( 0g ‘ ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) ) | 
						
							| 31 | 30 | ghmker | ⊢ ( ( pmSgn ‘ 𝐷 )  ∈  ( 𝑆  GrpHom  ( ( mulGrp ‘ ℂfld )  ↾s  { 1 ,  - 1 } ) )  →  ( ◡ ( pmSgn ‘ 𝐷 )  “  { 1 } )  ∈  ( NrmSGrp ‘ 𝑆 ) ) | 
						
							| 32 | 14 31 | syl | ⊢ ( 𝐷  ∈  Fin  →  ( ◡ ( pmSgn ‘ 𝐷 )  “  { 1 } )  ∈  ( NrmSGrp ‘ 𝑆 ) ) | 
						
							| 33 | 11 32 | eqeltrd | ⊢ ( 𝐷  ∈  Fin  →  ( pmEven ‘ 𝐷 )  ∈  ( NrmSGrp ‘ 𝑆 ) ) |