| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evpmid.1 |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
| 2 |
|
elex |
⊢ ( 𝐷 ∈ Fin → 𝐷 ∈ V ) |
| 3 |
|
fveq2 |
⊢ ( 𝑑 = 𝐷 → ( pmSgn ‘ 𝑑 ) = ( pmSgn ‘ 𝐷 ) ) |
| 4 |
3
|
cnveqd |
⊢ ( 𝑑 = 𝐷 → ◡ ( pmSgn ‘ 𝑑 ) = ◡ ( pmSgn ‘ 𝐷 ) ) |
| 5 |
4
|
imaeq1d |
⊢ ( 𝑑 = 𝐷 → ( ◡ ( pmSgn ‘ 𝑑 ) “ { 1 } ) = ( ◡ ( pmSgn ‘ 𝐷 ) “ { 1 } ) ) |
| 6 |
|
df-evpm |
⊢ pmEven = ( 𝑑 ∈ V ↦ ( ◡ ( pmSgn ‘ 𝑑 ) “ { 1 } ) ) |
| 7 |
|
fvex |
⊢ ( pmSgn ‘ 𝐷 ) ∈ V |
| 8 |
7
|
cnvex |
⊢ ◡ ( pmSgn ‘ 𝐷 ) ∈ V |
| 9 |
8
|
imaex |
⊢ ( ◡ ( pmSgn ‘ 𝐷 ) “ { 1 } ) ∈ V |
| 10 |
5 6 9
|
fvmpt |
⊢ ( 𝐷 ∈ V → ( pmEven ‘ 𝐷 ) = ( ◡ ( pmSgn ‘ 𝐷 ) “ { 1 } ) ) |
| 11 |
2 10
|
syl |
⊢ ( 𝐷 ∈ Fin → ( pmEven ‘ 𝐷 ) = ( ◡ ( pmSgn ‘ 𝐷 ) “ { 1 } ) ) |
| 12 |
|
eqid |
⊢ ( pmSgn ‘ 𝐷 ) = ( pmSgn ‘ 𝐷 ) |
| 13 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) |
| 14 |
1 12 13
|
psgnghm2 |
⊢ ( 𝐷 ∈ Fin → ( pmSgn ‘ 𝐷 ) ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 15 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 16 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
| 17 |
16
|
ringmgp |
⊢ ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
| 18 |
15 17
|
ax-mp |
⊢ ( mulGrp ‘ ℂfld ) ∈ Mnd |
| 19 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 20 |
|
prid1g |
⊢ ( 1 ∈ ℂ → 1 ∈ { 1 , - 1 } ) |
| 21 |
19 20
|
ax-mp |
⊢ 1 ∈ { 1 , - 1 } |
| 22 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 23 |
|
prssi |
⊢ ( ( 1 ∈ ℂ ∧ - 1 ∈ ℂ ) → { 1 , - 1 } ⊆ ℂ ) |
| 24 |
19 22 23
|
mp2an |
⊢ { 1 , - 1 } ⊆ ℂ |
| 25 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 26 |
16 25
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
| 27 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
| 28 |
16 27
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
| 29 |
13 26 28
|
ress0g |
⊢ ( ( ( mulGrp ‘ ℂfld ) ∈ Mnd ∧ 1 ∈ { 1 , - 1 } ∧ { 1 , - 1 } ⊆ ℂ ) → 1 = ( 0g ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 30 |
18 21 24 29
|
mp3an |
⊢ 1 = ( 0g ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) |
| 31 |
30
|
ghmker |
⊢ ( ( pmSgn ‘ 𝐷 ) ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → ( ◡ ( pmSgn ‘ 𝐷 ) “ { 1 } ) ∈ ( NrmSGrp ‘ 𝑆 ) ) |
| 32 |
14 31
|
syl |
⊢ ( 𝐷 ∈ Fin → ( ◡ ( pmSgn ‘ 𝐷 ) “ { 1 } ) ∈ ( NrmSGrp ‘ 𝑆 ) ) |
| 33 |
11 32
|
eqeltrd |
⊢ ( 𝐷 ∈ Fin → ( pmEven ‘ 𝐷 ) ∈ ( NrmSGrp ‘ 𝑆 ) ) |