Metamath Proof Explorer


Theorem altgnsg

Description: The alternating group ( pmEvenD ) is a normal subgroup of the symmetric group. (Contributed by Thierry Arnoux, 18-Sep-2023)

Ref Expression
Hypothesis evpmid.1 𝑆 = ( SymGrp ‘ 𝐷 )
Assertion altgnsg ( 𝐷 ∈ Fin → ( pmEven ‘ 𝐷 ) ∈ ( NrmSGrp ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 evpmid.1 𝑆 = ( SymGrp ‘ 𝐷 )
2 elex ( 𝐷 ∈ Fin → 𝐷 ∈ V )
3 fveq2 ( 𝑑 = 𝐷 → ( pmSgn ‘ 𝑑 ) = ( pmSgn ‘ 𝐷 ) )
4 3 cnveqd ( 𝑑 = 𝐷 ( pmSgn ‘ 𝑑 ) = ( pmSgn ‘ 𝐷 ) )
5 4 imaeq1d ( 𝑑 = 𝐷 → ( ( pmSgn ‘ 𝑑 ) “ { 1 } ) = ( ( pmSgn ‘ 𝐷 ) “ { 1 } ) )
6 df-evpm pmEven = ( 𝑑 ∈ V ↦ ( ( pmSgn ‘ 𝑑 ) “ { 1 } ) )
7 fvex ( pmSgn ‘ 𝐷 ) ∈ V
8 7 cnvex ( pmSgn ‘ 𝐷 ) ∈ V
9 8 imaex ( ( pmSgn ‘ 𝐷 ) “ { 1 } ) ∈ V
10 5 6 9 fvmpt ( 𝐷 ∈ V → ( pmEven ‘ 𝐷 ) = ( ( pmSgn ‘ 𝐷 ) “ { 1 } ) )
11 2 10 syl ( 𝐷 ∈ Fin → ( pmEven ‘ 𝐷 ) = ( ( pmSgn ‘ 𝐷 ) “ { 1 } ) )
12 eqid ( pmSgn ‘ 𝐷 ) = ( pmSgn ‘ 𝐷 )
13 eqid ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } )
14 1 12 13 psgnghm2 ( 𝐷 ∈ Fin → ( pmSgn ‘ 𝐷 ) ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) )
15 cnring fld ∈ Ring
16 eqid ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld )
17 16 ringmgp ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd )
18 15 17 ax-mp ( mulGrp ‘ ℂfld ) ∈ Mnd
19 ax-1cn 1 ∈ ℂ
20 prid1g ( 1 ∈ ℂ → 1 ∈ { 1 , - 1 } )
21 19 20 ax-mp 1 ∈ { 1 , - 1 }
22 neg1cn - 1 ∈ ℂ
23 prssi ( ( 1 ∈ ℂ ∧ - 1 ∈ ℂ ) → { 1 , - 1 } ⊆ ℂ )
24 19 22 23 mp2an { 1 , - 1 } ⊆ ℂ
25 cnfldbas ℂ = ( Base ‘ ℂfld )
26 16 25 mgpbas ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) )
27 cnfld1 1 = ( 1r ‘ ℂfld )
28 16 27 ringidval 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) )
29 13 26 28 ress0g ( ( ( mulGrp ‘ ℂfld ) ∈ Mnd ∧ 1 ∈ { 1 , - 1 } ∧ { 1 , - 1 } ⊆ ℂ ) → 1 = ( 0g ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) )
30 18 21 24 29 mp3an 1 = ( 0g ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) )
31 30 ghmker ( ( pmSgn ‘ 𝐷 ) ∈ ( 𝑆 GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → ( ( pmSgn ‘ 𝐷 ) “ { 1 } ) ∈ ( NrmSGrp ‘ 𝑆 ) )
32 14 31 syl ( 𝐷 ∈ Fin → ( ( pmSgn ‘ 𝐷 ) “ { 1 } ) ∈ ( NrmSGrp ‘ 𝑆 ) )
33 11 32 eqeltrd ( 𝐷 ∈ Fin → ( pmEven ‘ 𝐷 ) ∈ ( NrmSGrp ‘ 𝑆 ) )