| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cyc3evpm.t |
⊢ 𝐶 = ( ( toCyc ‘ 𝐷 ) “ ( ◡ ♯ “ { 3 } ) ) |
| 2 |
|
cyc3evpm.a |
⊢ 𝐴 = ( pmEven ‘ 𝐷 ) |
| 3 |
|
simpr |
⊢ ( ( ( ( 𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) = 𝑝 ) → ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) = 𝑝 ) |
| 4 |
|
simpl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → 𝐷 ∈ Fin ) |
| 5 |
|
eqid |
⊢ ( toCyc ‘ 𝐷 ) = ( toCyc ‘ 𝐷 ) |
| 6 |
|
simpr |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) |
| 7 |
6
|
elin1d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
| 8 |
|
elrabi |
⊢ ( 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } → 𝑢 ∈ Word 𝐷 ) |
| 9 |
7 8
|
syl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → 𝑢 ∈ Word 𝐷 ) |
| 10 |
|
id |
⊢ ( 𝑤 = 𝑢 → 𝑤 = 𝑢 ) |
| 11 |
|
dmeq |
⊢ ( 𝑤 = 𝑢 → dom 𝑤 = dom 𝑢 ) |
| 12 |
|
eqidd |
⊢ ( 𝑤 = 𝑢 → 𝐷 = 𝐷 ) |
| 13 |
10 11 12
|
f1eq123d |
⊢ ( 𝑤 = 𝑢 → ( 𝑤 : dom 𝑤 –1-1→ 𝐷 ↔ 𝑢 : dom 𝑢 –1-1→ 𝐷 ) ) |
| 14 |
13
|
elrab |
⊢ ( 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ↔ ( 𝑢 ∈ Word 𝐷 ∧ 𝑢 : dom 𝑢 –1-1→ 𝐷 ) ) |
| 15 |
14
|
simprbi |
⊢ ( 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } → 𝑢 : dom 𝑢 –1-1→ 𝐷 ) |
| 16 |
7 15
|
syl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → 𝑢 : dom 𝑢 –1-1→ 𝐷 ) |
| 17 |
|
eqid |
⊢ ( SymGrp ‘ 𝐷 ) = ( SymGrp ‘ 𝐷 ) |
| 18 |
5 4 9 16 17
|
cycpmcl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ∈ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ) |
| 19 |
|
c0ex |
⊢ 0 ∈ V |
| 20 |
19
|
tpid1 |
⊢ 0 ∈ { 0 , 1 , 2 } |
| 21 |
|
fzo0to3tp |
⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
| 22 |
20 21
|
eleqtrri |
⊢ 0 ∈ ( 0 ..^ 3 ) |
| 23 |
6
|
elin2d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → 𝑢 ∈ ( ◡ ♯ “ { 3 } ) ) |
| 24 |
|
hashf |
⊢ ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) |
| 25 |
|
ffn |
⊢ ( ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) → ♯ Fn V ) |
| 26 |
|
elpreima |
⊢ ( ♯ Fn V → ( 𝑢 ∈ ( ◡ ♯ “ { 3 } ) ↔ ( 𝑢 ∈ V ∧ ( ♯ ‘ 𝑢 ) ∈ { 3 } ) ) ) |
| 27 |
24 25 26
|
mp2b |
⊢ ( 𝑢 ∈ ( ◡ ♯ “ { 3 } ) ↔ ( 𝑢 ∈ V ∧ ( ♯ ‘ 𝑢 ) ∈ { 3 } ) ) |
| 28 |
27
|
simprbi |
⊢ ( 𝑢 ∈ ( ◡ ♯ “ { 3 } ) → ( ♯ ‘ 𝑢 ) ∈ { 3 } ) |
| 29 |
|
elsni |
⊢ ( ( ♯ ‘ 𝑢 ) ∈ { 3 } → ( ♯ ‘ 𝑢 ) = 3 ) |
| 30 |
23 28 29
|
3syl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ♯ ‘ 𝑢 ) = 3 ) |
| 31 |
30
|
oveq2d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( 0 ..^ ( ♯ ‘ 𝑢 ) ) = ( 0 ..^ 3 ) ) |
| 32 |
22 31
|
eleqtrrid |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) |
| 33 |
|
wrdsymbcl |
⊢ ( ( 𝑢 ∈ Word 𝐷 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) → ( 𝑢 ‘ 0 ) ∈ 𝐷 ) |
| 34 |
9 32 33
|
syl2anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( 𝑢 ‘ 0 ) ∈ 𝐷 ) |
| 35 |
|
1ex |
⊢ 1 ∈ V |
| 36 |
35
|
tpid2 |
⊢ 1 ∈ { 0 , 1 , 2 } |
| 37 |
36 21
|
eleqtrri |
⊢ 1 ∈ ( 0 ..^ 3 ) |
| 38 |
37 31
|
eleqtrrid |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → 1 ∈ ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) |
| 39 |
|
wrdsymbcl |
⊢ ( ( 𝑢 ∈ Word 𝐷 ∧ 1 ∈ ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) → ( 𝑢 ‘ 1 ) ∈ 𝐷 ) |
| 40 |
9 38 39
|
syl2anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( 𝑢 ‘ 1 ) ∈ 𝐷 ) |
| 41 |
|
2ex |
⊢ 2 ∈ V |
| 42 |
41
|
tpid3 |
⊢ 2 ∈ { 0 , 1 , 2 } |
| 43 |
42 21
|
eleqtrri |
⊢ 2 ∈ ( 0 ..^ 3 ) |
| 44 |
43 31
|
eleqtrrid |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → 2 ∈ ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) |
| 45 |
|
wrdsymbcl |
⊢ ( ( 𝑢 ∈ Word 𝐷 ∧ 2 ∈ ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) → ( 𝑢 ‘ 2 ) ∈ 𝐷 ) |
| 46 |
9 44 45
|
syl2anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( 𝑢 ‘ 2 ) ∈ 𝐷 ) |
| 47 |
34 40 46
|
3jca |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( 𝑢 ‘ 0 ) ∈ 𝐷 ∧ ( 𝑢 ‘ 1 ) ∈ 𝐷 ∧ ( 𝑢 ‘ 2 ) ∈ 𝐷 ) ) |
| 48 |
|
eqidd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( 𝑢 ‘ 0 ) = ( 𝑢 ‘ 0 ) ) |
| 49 |
|
eqidd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( 𝑢 ‘ 1 ) = ( 𝑢 ‘ 1 ) ) |
| 50 |
|
eqidd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( 𝑢 ‘ 2 ) = ( 𝑢 ‘ 2 ) ) |
| 51 |
48 49 50
|
3jca |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( 𝑢 ‘ 0 ) = ( 𝑢 ‘ 0 ) ∧ ( 𝑢 ‘ 1 ) = ( 𝑢 ‘ 1 ) ∧ ( 𝑢 ‘ 2 ) = ( 𝑢 ‘ 2 ) ) ) |
| 52 |
|
eqwrds3 |
⊢ ( ( 𝑢 ∈ Word 𝐷 ∧ ( ( 𝑢 ‘ 0 ) ∈ 𝐷 ∧ ( 𝑢 ‘ 1 ) ∈ 𝐷 ∧ ( 𝑢 ‘ 2 ) ∈ 𝐷 ) ) → ( 𝑢 = 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ( 𝑢 ‘ 2 ) ”〉 ↔ ( ( ♯ ‘ 𝑢 ) = 3 ∧ ( ( 𝑢 ‘ 0 ) = ( 𝑢 ‘ 0 ) ∧ ( 𝑢 ‘ 1 ) = ( 𝑢 ‘ 1 ) ∧ ( 𝑢 ‘ 2 ) = ( 𝑢 ‘ 2 ) ) ) ) ) |
| 53 |
52
|
biimpar |
⊢ ( ( ( 𝑢 ∈ Word 𝐷 ∧ ( ( 𝑢 ‘ 0 ) ∈ 𝐷 ∧ ( 𝑢 ‘ 1 ) ∈ 𝐷 ∧ ( 𝑢 ‘ 2 ) ∈ 𝐷 ) ) ∧ ( ( ♯ ‘ 𝑢 ) = 3 ∧ ( ( 𝑢 ‘ 0 ) = ( 𝑢 ‘ 0 ) ∧ ( 𝑢 ‘ 1 ) = ( 𝑢 ‘ 1 ) ∧ ( 𝑢 ‘ 2 ) = ( 𝑢 ‘ 2 ) ) ) ) → 𝑢 = 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ( 𝑢 ‘ 2 ) ”〉 ) |
| 54 |
9 47 30 51 53
|
syl22anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → 𝑢 = 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ( 𝑢 ‘ 2 ) ”〉 ) |
| 55 |
54
|
fveq2d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) = ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ( 𝑢 ‘ 2 ) ”〉 ) ) |
| 56 |
|
wrddm |
⊢ ( 𝑢 ∈ Word 𝐷 → dom 𝑢 = ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) |
| 57 |
9 56
|
syl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → dom 𝑢 = ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) |
| 58 |
57 31
|
eqtrd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → dom 𝑢 = ( 0 ..^ 3 ) ) |
| 59 |
58 21
|
eqtrdi |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → dom 𝑢 = { 0 , 1 , 2 } ) |
| 60 |
|
f1eq2 |
⊢ ( dom 𝑢 = { 0 , 1 , 2 } → ( 𝑢 : dom 𝑢 –1-1→ 𝐷 ↔ 𝑢 : { 0 , 1 , 2 } –1-1→ 𝐷 ) ) |
| 61 |
60
|
biimpa |
⊢ ( ( dom 𝑢 = { 0 , 1 , 2 } ∧ 𝑢 : dom 𝑢 –1-1→ 𝐷 ) → 𝑢 : { 0 , 1 , 2 } –1-1→ 𝐷 ) |
| 62 |
59 16 61
|
syl2anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → 𝑢 : { 0 , 1 , 2 } –1-1→ 𝐷 ) |
| 63 |
19 35 41
|
3pm3.2i |
⊢ ( 0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V ) |
| 64 |
|
0ne1 |
⊢ 0 ≠ 1 |
| 65 |
|
0ne2 |
⊢ 0 ≠ 2 |
| 66 |
|
1ne2 |
⊢ 1 ≠ 2 |
| 67 |
64 65 66
|
3pm3.2i |
⊢ ( 0 ≠ 1 ∧ 0 ≠ 2 ∧ 1 ≠ 2 ) |
| 68 |
|
eqid |
⊢ { 0 , 1 , 2 } = { 0 , 1 , 2 } |
| 69 |
68
|
f13dfv |
⊢ ( ( ( 0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V ) ∧ ( 0 ≠ 1 ∧ 0 ≠ 2 ∧ 1 ≠ 2 ) ) → ( 𝑢 : { 0 , 1 , 2 } –1-1→ 𝐷 ↔ ( 𝑢 : { 0 , 1 , 2 } ⟶ 𝐷 ∧ ( ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 1 ) ∧ ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 2 ) ∧ ( 𝑢 ‘ 1 ) ≠ ( 𝑢 ‘ 2 ) ) ) ) ) |
| 70 |
63 67 69
|
mp2an |
⊢ ( 𝑢 : { 0 , 1 , 2 } –1-1→ 𝐷 ↔ ( 𝑢 : { 0 , 1 , 2 } ⟶ 𝐷 ∧ ( ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 1 ) ∧ ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 2 ) ∧ ( 𝑢 ‘ 1 ) ≠ ( 𝑢 ‘ 2 ) ) ) ) |
| 71 |
70
|
simprbi |
⊢ ( 𝑢 : { 0 , 1 , 2 } –1-1→ 𝐷 → ( ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 1 ) ∧ ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 2 ) ∧ ( 𝑢 ‘ 1 ) ≠ ( 𝑢 ‘ 2 ) ) ) |
| 72 |
62 71
|
syl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 1 ) ∧ ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 2 ) ∧ ( 𝑢 ‘ 1 ) ≠ ( 𝑢 ‘ 2 ) ) ) |
| 73 |
72
|
simp1d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 1 ) ) |
| 74 |
72
|
simp3d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( 𝑢 ‘ 1 ) ≠ ( 𝑢 ‘ 2 ) ) |
| 75 |
72
|
simp2d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 2 ) ) |
| 76 |
75
|
necomd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( 𝑢 ‘ 2 ) ≠ ( 𝑢 ‘ 0 ) ) |
| 77 |
|
eqid |
⊢ ( +g ‘ ( SymGrp ‘ 𝐷 ) ) = ( +g ‘ ( SymGrp ‘ 𝐷 ) ) |
| 78 |
5 17 4 34 40 46 73 74 76 77
|
cyc3co2 |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ( 𝑢 ‘ 2 ) ”〉 ) = ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ( +g ‘ ( SymGrp ‘ 𝐷 ) ) ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) ) |
| 79 |
5 4 34 46 75 17
|
cycpm2cl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ∈ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ) |
| 80 |
5 4 34 40 73 17
|
cycpm2cl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ∈ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ) |
| 81 |
|
eqid |
⊢ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) = ( Base ‘ ( SymGrp ‘ 𝐷 ) ) |
| 82 |
17 81 77
|
symgov |
⊢ ( ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ∈ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ∧ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ∈ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ) → ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ( +g ‘ ( SymGrp ‘ 𝐷 ) ) ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) = ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ∘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) ) |
| 83 |
79 80 82
|
syl2anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ( +g ‘ ( SymGrp ‘ 𝐷 ) ) ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) = ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ∘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) ) |
| 84 |
55 78 83
|
3eqtrd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) = ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ∘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) ) |
| 85 |
84
|
fveq2d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ) = ( ( pmSgn ‘ 𝐷 ) ‘ ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ∘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) ) ) |
| 86 |
|
eqid |
⊢ ( pmSgn ‘ 𝐷 ) = ( pmSgn ‘ 𝐷 ) |
| 87 |
17 86 81
|
psgnco |
⊢ ( ( 𝐷 ∈ Fin ∧ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ∈ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ∧ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ∈ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ∘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) ) = ( ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ) · ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) ) ) |
| 88 |
4 79 80 87
|
syl3anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ∘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) ) = ( ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ) · ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) ) ) |
| 89 |
|
eqid |
⊢ ( pmTrsp ‘ 𝐷 ) = ( pmTrsp ‘ 𝐷 ) |
| 90 |
5 4 34 46 75 89
|
cycpm2tr |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) = ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 2 ) } ) ) |
| 91 |
34 46
|
prssd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 2 ) } ⊆ 𝐷 ) |
| 92 |
|
enpr2 |
⊢ ( ( ( 𝑢 ‘ 0 ) ∈ 𝐷 ∧ ( 𝑢 ‘ 2 ) ∈ 𝐷 ∧ ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 2 ) ) → { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 2 ) } ≈ 2o ) |
| 93 |
34 46 75 92
|
syl3anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 2 ) } ≈ 2o ) |
| 94 |
|
eqid |
⊢ ran ( pmTrsp ‘ 𝐷 ) = ran ( pmTrsp ‘ 𝐷 ) |
| 95 |
89 94
|
pmtrrn |
⊢ ( ( 𝐷 ∈ Fin ∧ { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 2 ) } ⊆ 𝐷 ∧ { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 2 ) } ≈ 2o ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 2 ) } ) ∈ ran ( pmTrsp ‘ 𝐷 ) ) |
| 96 |
4 91 93 95
|
syl3anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 2 ) } ) ∈ ran ( pmTrsp ‘ 𝐷 ) ) |
| 97 |
90 96
|
eqeltrd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ∈ ran ( pmTrsp ‘ 𝐷 ) ) |
| 98 |
17 94 86
|
psgnpmtr |
⊢ ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ∈ ran ( pmTrsp ‘ 𝐷 ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ) = - 1 ) |
| 99 |
97 98
|
syl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ) = - 1 ) |
| 100 |
5 4 34 40 73 89
|
cycpm2tr |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) = ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 1 ) } ) ) |
| 101 |
34 40
|
prssd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 1 ) } ⊆ 𝐷 ) |
| 102 |
|
enpr2 |
⊢ ( ( ( 𝑢 ‘ 0 ) ∈ 𝐷 ∧ ( 𝑢 ‘ 1 ) ∈ 𝐷 ∧ ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 1 ) ) → { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 1 ) } ≈ 2o ) |
| 103 |
34 40 73 102
|
syl3anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 1 ) } ≈ 2o ) |
| 104 |
89 94
|
pmtrrn |
⊢ ( ( 𝐷 ∈ Fin ∧ { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 1 ) } ⊆ 𝐷 ∧ { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 1 ) } ≈ 2o ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 1 ) } ) ∈ ran ( pmTrsp ‘ 𝐷 ) ) |
| 105 |
4 101 103 104
|
syl3anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 1 ) } ) ∈ ran ( pmTrsp ‘ 𝐷 ) ) |
| 106 |
100 105
|
eqeltrd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ∈ ran ( pmTrsp ‘ 𝐷 ) ) |
| 107 |
17 94 86
|
psgnpmtr |
⊢ ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ∈ ran ( pmTrsp ‘ 𝐷 ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) = - 1 ) |
| 108 |
106 107
|
syl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) = - 1 ) |
| 109 |
99 108
|
oveq12d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ) · ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) ) = ( - 1 · - 1 ) ) |
| 110 |
|
neg1mulneg1e1 |
⊢ ( - 1 · - 1 ) = 1 |
| 111 |
109 110
|
eqtrdi |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ) · ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) ) = 1 ) |
| 112 |
85 88 111
|
3eqtrd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ) = 1 ) |
| 113 |
17 81 86
|
psgnevpmb |
⊢ ( 𝐷 ∈ Fin → ( ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ∈ ( pmEven ‘ 𝐷 ) ↔ ( ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ∈ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ∧ ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ) = 1 ) ) ) |
| 114 |
113
|
biimpar |
⊢ ( ( 𝐷 ∈ Fin ∧ ( ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ∈ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ∧ ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ) = 1 ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ∈ ( pmEven ‘ 𝐷 ) ) |
| 115 |
4 18 112 114
|
syl12anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ∈ ( pmEven ‘ 𝐷 ) ) |
| 116 |
115 2
|
eleqtrrdi |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ∈ 𝐴 ) |
| 117 |
116
|
ad4ant13 |
⊢ ( ( ( ( 𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) = 𝑝 ) → ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ∈ 𝐴 ) |
| 118 |
3 117
|
eqeltrrd |
⊢ ( ( ( ( 𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) = 𝑝 ) → 𝑝 ∈ 𝐴 ) |
| 119 |
|
nfcv |
⊢ Ⅎ 𝑢 ( toCyc ‘ 𝐷 ) |
| 120 |
5 17 81
|
tocycf |
⊢ ( 𝐷 ∈ Fin → ( toCyc ‘ 𝐷 ) : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ) |
| 121 |
120
|
ffnd |
⊢ ( 𝐷 ∈ Fin → ( toCyc ‘ 𝐷 ) Fn { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
| 122 |
121
|
adantr |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶 ) → ( toCyc ‘ 𝐷 ) Fn { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
| 123 |
|
simpr |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶 ) → 𝑝 ∈ 𝐶 ) |
| 124 |
123 1
|
eleqtrdi |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶 ) → 𝑝 ∈ ( ( toCyc ‘ 𝐷 ) “ ( ◡ ♯ “ { 3 } ) ) ) |
| 125 |
119 122 124
|
fvelimad |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶 ) → ∃ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) = 𝑝 ) |
| 126 |
118 125
|
r19.29a |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶 ) → 𝑝 ∈ 𝐴 ) |
| 127 |
126
|
ex |
⊢ ( 𝐷 ∈ Fin → ( 𝑝 ∈ 𝐶 → 𝑝 ∈ 𝐴 ) ) |
| 128 |
127
|
ssrdv |
⊢ ( 𝐷 ∈ Fin → 𝐶 ⊆ 𝐴 ) |