Step |
Hyp |
Ref |
Expression |
1 |
|
cyc3evpm.t |
⊢ 𝐶 = ( ( toCyc ‘ 𝐷 ) “ ( ◡ ♯ “ { 3 } ) ) |
2 |
|
cyc3evpm.a |
⊢ 𝐴 = ( pmEven ‘ 𝐷 ) |
3 |
|
simpr |
⊢ ( ( ( ( 𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) = 𝑝 ) → ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) = 𝑝 ) |
4 |
|
simpl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → 𝐷 ∈ Fin ) |
5 |
|
eqid |
⊢ ( toCyc ‘ 𝐷 ) = ( toCyc ‘ 𝐷 ) |
6 |
|
simpr |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) |
7 |
6
|
elin1d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
8 |
|
elrabi |
⊢ ( 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } → 𝑢 ∈ Word 𝐷 ) |
9 |
7 8
|
syl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → 𝑢 ∈ Word 𝐷 ) |
10 |
|
id |
⊢ ( 𝑤 = 𝑢 → 𝑤 = 𝑢 ) |
11 |
|
dmeq |
⊢ ( 𝑤 = 𝑢 → dom 𝑤 = dom 𝑢 ) |
12 |
|
eqidd |
⊢ ( 𝑤 = 𝑢 → 𝐷 = 𝐷 ) |
13 |
10 11 12
|
f1eq123d |
⊢ ( 𝑤 = 𝑢 → ( 𝑤 : dom 𝑤 –1-1→ 𝐷 ↔ 𝑢 : dom 𝑢 –1-1→ 𝐷 ) ) |
14 |
13
|
elrab |
⊢ ( 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ↔ ( 𝑢 ∈ Word 𝐷 ∧ 𝑢 : dom 𝑢 –1-1→ 𝐷 ) ) |
15 |
14
|
simprbi |
⊢ ( 𝑢 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } → 𝑢 : dom 𝑢 –1-1→ 𝐷 ) |
16 |
7 15
|
syl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → 𝑢 : dom 𝑢 –1-1→ 𝐷 ) |
17 |
|
eqid |
⊢ ( SymGrp ‘ 𝐷 ) = ( SymGrp ‘ 𝐷 ) |
18 |
5 4 9 16 17
|
cycpmcl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ∈ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ) |
19 |
|
c0ex |
⊢ 0 ∈ V |
20 |
19
|
tpid1 |
⊢ 0 ∈ { 0 , 1 , 2 } |
21 |
|
fzo0to3tp |
⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
22 |
20 21
|
eleqtrri |
⊢ 0 ∈ ( 0 ..^ 3 ) |
23 |
6
|
elin2d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → 𝑢 ∈ ( ◡ ♯ “ { 3 } ) ) |
24 |
|
hashf |
⊢ ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) |
25 |
|
ffn |
⊢ ( ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) → ♯ Fn V ) |
26 |
|
elpreima |
⊢ ( ♯ Fn V → ( 𝑢 ∈ ( ◡ ♯ “ { 3 } ) ↔ ( 𝑢 ∈ V ∧ ( ♯ ‘ 𝑢 ) ∈ { 3 } ) ) ) |
27 |
24 25 26
|
mp2b |
⊢ ( 𝑢 ∈ ( ◡ ♯ “ { 3 } ) ↔ ( 𝑢 ∈ V ∧ ( ♯ ‘ 𝑢 ) ∈ { 3 } ) ) |
28 |
27
|
simprbi |
⊢ ( 𝑢 ∈ ( ◡ ♯ “ { 3 } ) → ( ♯ ‘ 𝑢 ) ∈ { 3 } ) |
29 |
|
elsni |
⊢ ( ( ♯ ‘ 𝑢 ) ∈ { 3 } → ( ♯ ‘ 𝑢 ) = 3 ) |
30 |
23 28 29
|
3syl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ♯ ‘ 𝑢 ) = 3 ) |
31 |
30
|
oveq2d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( 0 ..^ ( ♯ ‘ 𝑢 ) ) = ( 0 ..^ 3 ) ) |
32 |
22 31
|
eleqtrrid |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) |
33 |
|
wrdsymbcl |
⊢ ( ( 𝑢 ∈ Word 𝐷 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) → ( 𝑢 ‘ 0 ) ∈ 𝐷 ) |
34 |
9 32 33
|
syl2anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( 𝑢 ‘ 0 ) ∈ 𝐷 ) |
35 |
|
1ex |
⊢ 1 ∈ V |
36 |
35
|
tpid2 |
⊢ 1 ∈ { 0 , 1 , 2 } |
37 |
36 21
|
eleqtrri |
⊢ 1 ∈ ( 0 ..^ 3 ) |
38 |
37 31
|
eleqtrrid |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → 1 ∈ ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) |
39 |
|
wrdsymbcl |
⊢ ( ( 𝑢 ∈ Word 𝐷 ∧ 1 ∈ ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) → ( 𝑢 ‘ 1 ) ∈ 𝐷 ) |
40 |
9 38 39
|
syl2anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( 𝑢 ‘ 1 ) ∈ 𝐷 ) |
41 |
|
2ex |
⊢ 2 ∈ V |
42 |
41
|
tpid3 |
⊢ 2 ∈ { 0 , 1 , 2 } |
43 |
42 21
|
eleqtrri |
⊢ 2 ∈ ( 0 ..^ 3 ) |
44 |
43 31
|
eleqtrrid |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → 2 ∈ ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) |
45 |
|
wrdsymbcl |
⊢ ( ( 𝑢 ∈ Word 𝐷 ∧ 2 ∈ ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) → ( 𝑢 ‘ 2 ) ∈ 𝐷 ) |
46 |
9 44 45
|
syl2anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( 𝑢 ‘ 2 ) ∈ 𝐷 ) |
47 |
34 40 46
|
3jca |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( 𝑢 ‘ 0 ) ∈ 𝐷 ∧ ( 𝑢 ‘ 1 ) ∈ 𝐷 ∧ ( 𝑢 ‘ 2 ) ∈ 𝐷 ) ) |
48 |
|
eqidd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( 𝑢 ‘ 0 ) = ( 𝑢 ‘ 0 ) ) |
49 |
|
eqidd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( 𝑢 ‘ 1 ) = ( 𝑢 ‘ 1 ) ) |
50 |
|
eqidd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( 𝑢 ‘ 2 ) = ( 𝑢 ‘ 2 ) ) |
51 |
48 49 50
|
3jca |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( 𝑢 ‘ 0 ) = ( 𝑢 ‘ 0 ) ∧ ( 𝑢 ‘ 1 ) = ( 𝑢 ‘ 1 ) ∧ ( 𝑢 ‘ 2 ) = ( 𝑢 ‘ 2 ) ) ) |
52 |
|
eqwrds3 |
⊢ ( ( 𝑢 ∈ Word 𝐷 ∧ ( ( 𝑢 ‘ 0 ) ∈ 𝐷 ∧ ( 𝑢 ‘ 1 ) ∈ 𝐷 ∧ ( 𝑢 ‘ 2 ) ∈ 𝐷 ) ) → ( 𝑢 = 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ( 𝑢 ‘ 2 ) ”〉 ↔ ( ( ♯ ‘ 𝑢 ) = 3 ∧ ( ( 𝑢 ‘ 0 ) = ( 𝑢 ‘ 0 ) ∧ ( 𝑢 ‘ 1 ) = ( 𝑢 ‘ 1 ) ∧ ( 𝑢 ‘ 2 ) = ( 𝑢 ‘ 2 ) ) ) ) ) |
53 |
52
|
biimpar |
⊢ ( ( ( 𝑢 ∈ Word 𝐷 ∧ ( ( 𝑢 ‘ 0 ) ∈ 𝐷 ∧ ( 𝑢 ‘ 1 ) ∈ 𝐷 ∧ ( 𝑢 ‘ 2 ) ∈ 𝐷 ) ) ∧ ( ( ♯ ‘ 𝑢 ) = 3 ∧ ( ( 𝑢 ‘ 0 ) = ( 𝑢 ‘ 0 ) ∧ ( 𝑢 ‘ 1 ) = ( 𝑢 ‘ 1 ) ∧ ( 𝑢 ‘ 2 ) = ( 𝑢 ‘ 2 ) ) ) ) → 𝑢 = 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ( 𝑢 ‘ 2 ) ”〉 ) |
54 |
9 47 30 51 53
|
syl22anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → 𝑢 = 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ( 𝑢 ‘ 2 ) ”〉 ) |
55 |
54
|
fveq2d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) = ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ( 𝑢 ‘ 2 ) ”〉 ) ) |
56 |
|
wrddm |
⊢ ( 𝑢 ∈ Word 𝐷 → dom 𝑢 = ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) |
57 |
9 56
|
syl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → dom 𝑢 = ( 0 ..^ ( ♯ ‘ 𝑢 ) ) ) |
58 |
57 31
|
eqtrd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → dom 𝑢 = ( 0 ..^ 3 ) ) |
59 |
58 21
|
eqtrdi |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → dom 𝑢 = { 0 , 1 , 2 } ) |
60 |
|
f1eq2 |
⊢ ( dom 𝑢 = { 0 , 1 , 2 } → ( 𝑢 : dom 𝑢 –1-1→ 𝐷 ↔ 𝑢 : { 0 , 1 , 2 } –1-1→ 𝐷 ) ) |
61 |
60
|
biimpa |
⊢ ( ( dom 𝑢 = { 0 , 1 , 2 } ∧ 𝑢 : dom 𝑢 –1-1→ 𝐷 ) → 𝑢 : { 0 , 1 , 2 } –1-1→ 𝐷 ) |
62 |
59 16 61
|
syl2anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → 𝑢 : { 0 , 1 , 2 } –1-1→ 𝐷 ) |
63 |
19 35 41
|
3pm3.2i |
⊢ ( 0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V ) |
64 |
|
0ne1 |
⊢ 0 ≠ 1 |
65 |
|
0ne2 |
⊢ 0 ≠ 2 |
66 |
|
1ne2 |
⊢ 1 ≠ 2 |
67 |
64 65 66
|
3pm3.2i |
⊢ ( 0 ≠ 1 ∧ 0 ≠ 2 ∧ 1 ≠ 2 ) |
68 |
|
eqid |
⊢ { 0 , 1 , 2 } = { 0 , 1 , 2 } |
69 |
68
|
f13dfv |
⊢ ( ( ( 0 ∈ V ∧ 1 ∈ V ∧ 2 ∈ V ) ∧ ( 0 ≠ 1 ∧ 0 ≠ 2 ∧ 1 ≠ 2 ) ) → ( 𝑢 : { 0 , 1 , 2 } –1-1→ 𝐷 ↔ ( 𝑢 : { 0 , 1 , 2 } ⟶ 𝐷 ∧ ( ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 1 ) ∧ ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 2 ) ∧ ( 𝑢 ‘ 1 ) ≠ ( 𝑢 ‘ 2 ) ) ) ) ) |
70 |
63 67 69
|
mp2an |
⊢ ( 𝑢 : { 0 , 1 , 2 } –1-1→ 𝐷 ↔ ( 𝑢 : { 0 , 1 , 2 } ⟶ 𝐷 ∧ ( ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 1 ) ∧ ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 2 ) ∧ ( 𝑢 ‘ 1 ) ≠ ( 𝑢 ‘ 2 ) ) ) ) |
71 |
70
|
simprbi |
⊢ ( 𝑢 : { 0 , 1 , 2 } –1-1→ 𝐷 → ( ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 1 ) ∧ ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 2 ) ∧ ( 𝑢 ‘ 1 ) ≠ ( 𝑢 ‘ 2 ) ) ) |
72 |
62 71
|
syl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 1 ) ∧ ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 2 ) ∧ ( 𝑢 ‘ 1 ) ≠ ( 𝑢 ‘ 2 ) ) ) |
73 |
72
|
simp1d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 1 ) ) |
74 |
72
|
simp3d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( 𝑢 ‘ 1 ) ≠ ( 𝑢 ‘ 2 ) ) |
75 |
72
|
simp2d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 2 ) ) |
76 |
75
|
necomd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( 𝑢 ‘ 2 ) ≠ ( 𝑢 ‘ 0 ) ) |
77 |
|
eqid |
⊢ ( +g ‘ ( SymGrp ‘ 𝐷 ) ) = ( +g ‘ ( SymGrp ‘ 𝐷 ) ) |
78 |
5 17 4 34 40 46 73 74 76 77
|
cyc3co2 |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ( 𝑢 ‘ 2 ) ”〉 ) = ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ( +g ‘ ( SymGrp ‘ 𝐷 ) ) ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) ) |
79 |
5 4 34 46 75 17
|
cycpm2cl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ∈ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ) |
80 |
5 4 34 40 73 17
|
cycpm2cl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ∈ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ) |
81 |
|
eqid |
⊢ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) = ( Base ‘ ( SymGrp ‘ 𝐷 ) ) |
82 |
17 81 77
|
symgov |
⊢ ( ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ∈ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ∧ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ∈ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ) → ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ( +g ‘ ( SymGrp ‘ 𝐷 ) ) ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) = ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ∘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) ) |
83 |
79 80 82
|
syl2anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ( +g ‘ ( SymGrp ‘ 𝐷 ) ) ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) = ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ∘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) ) |
84 |
55 78 83
|
3eqtrd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) = ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ∘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) ) |
85 |
84
|
fveq2d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ) = ( ( pmSgn ‘ 𝐷 ) ‘ ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ∘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) ) ) |
86 |
|
eqid |
⊢ ( pmSgn ‘ 𝐷 ) = ( pmSgn ‘ 𝐷 ) |
87 |
17 86 81
|
psgnco |
⊢ ( ( 𝐷 ∈ Fin ∧ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ∈ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ∧ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ∈ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ∘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) ) = ( ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ) · ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) ) ) |
88 |
4 79 80 87
|
syl3anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ∘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) ) = ( ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ) · ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) ) ) |
89 |
|
eqid |
⊢ ( pmTrsp ‘ 𝐷 ) = ( pmTrsp ‘ 𝐷 ) |
90 |
5 4 34 46 75 89
|
cycpm2tr |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) = ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 2 ) } ) ) |
91 |
34 46
|
prssd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 2 ) } ⊆ 𝐷 ) |
92 |
|
pr2nelem |
⊢ ( ( ( 𝑢 ‘ 0 ) ∈ 𝐷 ∧ ( 𝑢 ‘ 2 ) ∈ 𝐷 ∧ ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 2 ) ) → { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 2 ) } ≈ 2o ) |
93 |
34 46 75 92
|
syl3anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 2 ) } ≈ 2o ) |
94 |
|
eqid |
⊢ ran ( pmTrsp ‘ 𝐷 ) = ran ( pmTrsp ‘ 𝐷 ) |
95 |
89 94
|
pmtrrn |
⊢ ( ( 𝐷 ∈ Fin ∧ { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 2 ) } ⊆ 𝐷 ∧ { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 2 ) } ≈ 2o ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 2 ) } ) ∈ ran ( pmTrsp ‘ 𝐷 ) ) |
96 |
4 91 93 95
|
syl3anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 2 ) } ) ∈ ran ( pmTrsp ‘ 𝐷 ) ) |
97 |
90 96
|
eqeltrd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ∈ ran ( pmTrsp ‘ 𝐷 ) ) |
98 |
17 94 86
|
psgnpmtr |
⊢ ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ∈ ran ( pmTrsp ‘ 𝐷 ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ) = - 1 ) |
99 |
97 98
|
syl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ) = - 1 ) |
100 |
5 4 34 40 73 89
|
cycpm2tr |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) = ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 1 ) } ) ) |
101 |
34 40
|
prssd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 1 ) } ⊆ 𝐷 ) |
102 |
|
pr2nelem |
⊢ ( ( ( 𝑢 ‘ 0 ) ∈ 𝐷 ∧ ( 𝑢 ‘ 1 ) ∈ 𝐷 ∧ ( 𝑢 ‘ 0 ) ≠ ( 𝑢 ‘ 1 ) ) → { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 1 ) } ≈ 2o ) |
103 |
34 40 73 102
|
syl3anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 1 ) } ≈ 2o ) |
104 |
89 94
|
pmtrrn |
⊢ ( ( 𝐷 ∈ Fin ∧ { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 1 ) } ⊆ 𝐷 ∧ { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 1 ) } ≈ 2o ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 1 ) } ) ∈ ran ( pmTrsp ‘ 𝐷 ) ) |
105 |
4 101 103 104
|
syl3anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( pmTrsp ‘ 𝐷 ) ‘ { ( 𝑢 ‘ 0 ) , ( 𝑢 ‘ 1 ) } ) ∈ ran ( pmTrsp ‘ 𝐷 ) ) |
106 |
100 105
|
eqeltrd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ∈ ran ( pmTrsp ‘ 𝐷 ) ) |
107 |
17 94 86
|
psgnpmtr |
⊢ ( ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ∈ ran ( pmTrsp ‘ 𝐷 ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) = - 1 ) |
108 |
106 107
|
syl |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) = - 1 ) |
109 |
99 108
|
oveq12d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ) · ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) ) = ( - 1 · - 1 ) ) |
110 |
|
neg1mulneg1e1 |
⊢ ( - 1 · - 1 ) = 1 |
111 |
109 110
|
eqtrdi |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 2 ) ”〉 ) ) · ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 〈“ ( 𝑢 ‘ 0 ) ( 𝑢 ‘ 1 ) ”〉 ) ) ) = 1 ) |
112 |
85 88 111
|
3eqtrd |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ) = 1 ) |
113 |
17 81 86
|
psgnevpmb |
⊢ ( 𝐷 ∈ Fin → ( ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ∈ ( pmEven ‘ 𝐷 ) ↔ ( ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ∈ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ∧ ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ) = 1 ) ) ) |
114 |
113
|
biimpar |
⊢ ( ( 𝐷 ∈ Fin ∧ ( ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ∈ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ∧ ( ( pmSgn ‘ 𝐷 ) ‘ ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ) = 1 ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ∈ ( pmEven ‘ 𝐷 ) ) |
115 |
4 18 112 114
|
syl12anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ∈ ( pmEven ‘ 𝐷 ) ) |
116 |
115 2
|
eleqtrrdi |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) → ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ∈ 𝐴 ) |
117 |
116
|
ad4ant13 |
⊢ ( ( ( ( 𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) = 𝑝 ) → ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) ∈ 𝐴 ) |
118 |
3 117
|
eqeltrrd |
⊢ ( ( ( ( 𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶 ) ∧ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ) ∧ ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) = 𝑝 ) → 𝑝 ∈ 𝐴 ) |
119 |
|
nfcv |
⊢ Ⅎ 𝑢 ( toCyc ‘ 𝐷 ) |
120 |
5 17 81
|
tocycf |
⊢ ( 𝐷 ∈ Fin → ( toCyc ‘ 𝐷 ) : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ ( SymGrp ‘ 𝐷 ) ) ) |
121 |
120
|
ffnd |
⊢ ( 𝐷 ∈ Fin → ( toCyc ‘ 𝐷 ) Fn { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
122 |
121
|
adantr |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶 ) → ( toCyc ‘ 𝐷 ) Fn { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
123 |
|
simpr |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶 ) → 𝑝 ∈ 𝐶 ) |
124 |
123 1
|
eleqtrdi |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶 ) → 𝑝 ∈ ( ( toCyc ‘ 𝐷 ) “ ( ◡ ♯ “ { 3 } ) ) ) |
125 |
119 122 124
|
fvelimad |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶 ) → ∃ 𝑢 ∈ ( { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ∩ ( ◡ ♯ “ { 3 } ) ) ( ( toCyc ‘ 𝐷 ) ‘ 𝑢 ) = 𝑝 ) |
126 |
118 125
|
r19.29a |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐶 ) → 𝑝 ∈ 𝐴 ) |
127 |
126
|
ex |
⊢ ( 𝐷 ∈ Fin → ( 𝑝 ∈ 𝐶 → 𝑝 ∈ 𝐴 ) ) |
128 |
127
|
ssrdv |
⊢ ( 𝐷 ∈ Fin → 𝐶 ⊆ 𝐴 ) |