| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cyc3evpm.t |  |-  C = ( ( toCyc ` D ) " ( `' # " { 3 } ) ) | 
						
							| 2 |  | cyc3evpm.a |  |-  A = ( pmEven ` D ) | 
						
							| 3 |  | simpr |  |-  ( ( ( ( D e. Fin /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( ( toCyc ` D ) ` u ) = p ) -> ( ( toCyc ` D ) ` u ) = p ) | 
						
							| 4 |  | simpl |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> D e. Fin ) | 
						
							| 5 |  | eqid |  |-  ( toCyc ` D ) = ( toCyc ` D ) | 
						
							| 6 |  | simpr |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) | 
						
							| 7 | 6 | elin1d |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> u e. { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 8 |  | elrabi |  |-  ( u e. { w e. Word D | w : dom w -1-1-> D } -> u e. Word D ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> u e. Word D ) | 
						
							| 10 |  | id |  |-  ( w = u -> w = u ) | 
						
							| 11 |  | dmeq |  |-  ( w = u -> dom w = dom u ) | 
						
							| 12 |  | eqidd |  |-  ( w = u -> D = D ) | 
						
							| 13 | 10 11 12 | f1eq123d |  |-  ( w = u -> ( w : dom w -1-1-> D <-> u : dom u -1-1-> D ) ) | 
						
							| 14 | 13 | elrab |  |-  ( u e. { w e. Word D | w : dom w -1-1-> D } <-> ( u e. Word D /\ u : dom u -1-1-> D ) ) | 
						
							| 15 | 14 | simprbi |  |-  ( u e. { w e. Word D | w : dom w -1-1-> D } -> u : dom u -1-1-> D ) | 
						
							| 16 | 7 15 | syl |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> u : dom u -1-1-> D ) | 
						
							| 17 |  | eqid |  |-  ( SymGrp ` D ) = ( SymGrp ` D ) | 
						
							| 18 | 5 4 9 16 17 | cycpmcl |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` u ) e. ( Base ` ( SymGrp ` D ) ) ) | 
						
							| 19 |  | c0ex |  |-  0 e. _V | 
						
							| 20 | 19 | tpid1 |  |-  0 e. { 0 , 1 , 2 } | 
						
							| 21 |  | fzo0to3tp |  |-  ( 0 ..^ 3 ) = { 0 , 1 , 2 } | 
						
							| 22 | 20 21 | eleqtrri |  |-  0 e. ( 0 ..^ 3 ) | 
						
							| 23 | 6 | elin2d |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> u e. ( `' # " { 3 } ) ) | 
						
							| 24 |  | hashf |  |-  # : _V --> ( NN0 u. { +oo } ) | 
						
							| 25 |  | ffn |  |-  ( # : _V --> ( NN0 u. { +oo } ) -> # Fn _V ) | 
						
							| 26 |  | elpreima |  |-  ( # Fn _V -> ( u e. ( `' # " { 3 } ) <-> ( u e. _V /\ ( # ` u ) e. { 3 } ) ) ) | 
						
							| 27 | 24 25 26 | mp2b |  |-  ( u e. ( `' # " { 3 } ) <-> ( u e. _V /\ ( # ` u ) e. { 3 } ) ) | 
						
							| 28 | 27 | simprbi |  |-  ( u e. ( `' # " { 3 } ) -> ( # ` u ) e. { 3 } ) | 
						
							| 29 |  | elsni |  |-  ( ( # ` u ) e. { 3 } -> ( # ` u ) = 3 ) | 
						
							| 30 | 23 28 29 | 3syl |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( # ` u ) = 3 ) | 
						
							| 31 | 30 | oveq2d |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( 0 ..^ ( # ` u ) ) = ( 0 ..^ 3 ) ) | 
						
							| 32 | 22 31 | eleqtrrid |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> 0 e. ( 0 ..^ ( # ` u ) ) ) | 
						
							| 33 |  | wrdsymbcl |  |-  ( ( u e. Word D /\ 0 e. ( 0 ..^ ( # ` u ) ) ) -> ( u ` 0 ) e. D ) | 
						
							| 34 | 9 32 33 | syl2anc |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 0 ) e. D ) | 
						
							| 35 |  | 1ex |  |-  1 e. _V | 
						
							| 36 | 35 | tpid2 |  |-  1 e. { 0 , 1 , 2 } | 
						
							| 37 | 36 21 | eleqtrri |  |-  1 e. ( 0 ..^ 3 ) | 
						
							| 38 | 37 31 | eleqtrrid |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> 1 e. ( 0 ..^ ( # ` u ) ) ) | 
						
							| 39 |  | wrdsymbcl |  |-  ( ( u e. Word D /\ 1 e. ( 0 ..^ ( # ` u ) ) ) -> ( u ` 1 ) e. D ) | 
						
							| 40 | 9 38 39 | syl2anc |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 1 ) e. D ) | 
						
							| 41 |  | 2ex |  |-  2 e. _V | 
						
							| 42 | 41 | tpid3 |  |-  2 e. { 0 , 1 , 2 } | 
						
							| 43 | 42 21 | eleqtrri |  |-  2 e. ( 0 ..^ 3 ) | 
						
							| 44 | 43 31 | eleqtrrid |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> 2 e. ( 0 ..^ ( # ` u ) ) ) | 
						
							| 45 |  | wrdsymbcl |  |-  ( ( u e. Word D /\ 2 e. ( 0 ..^ ( # ` u ) ) ) -> ( u ` 2 ) e. D ) | 
						
							| 46 | 9 44 45 | syl2anc |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 2 ) e. D ) | 
						
							| 47 | 34 40 46 | 3jca |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( u ` 0 ) e. D /\ ( u ` 1 ) e. D /\ ( u ` 2 ) e. D ) ) | 
						
							| 48 |  | eqidd |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 0 ) = ( u ` 0 ) ) | 
						
							| 49 |  | eqidd |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 1 ) = ( u ` 1 ) ) | 
						
							| 50 |  | eqidd |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 2 ) = ( u ` 2 ) ) | 
						
							| 51 | 48 49 50 | 3jca |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( u ` 0 ) = ( u ` 0 ) /\ ( u ` 1 ) = ( u ` 1 ) /\ ( u ` 2 ) = ( u ` 2 ) ) ) | 
						
							| 52 |  | eqwrds3 |  |-  ( ( u e. Word D /\ ( ( u ` 0 ) e. D /\ ( u ` 1 ) e. D /\ ( u ` 2 ) e. D ) ) -> ( u = <" ( u ` 0 ) ( u ` 1 ) ( u ` 2 ) "> <-> ( ( # ` u ) = 3 /\ ( ( u ` 0 ) = ( u ` 0 ) /\ ( u ` 1 ) = ( u ` 1 ) /\ ( u ` 2 ) = ( u ` 2 ) ) ) ) ) | 
						
							| 53 | 52 | biimpar |  |-  ( ( ( u e. Word D /\ ( ( u ` 0 ) e. D /\ ( u ` 1 ) e. D /\ ( u ` 2 ) e. D ) ) /\ ( ( # ` u ) = 3 /\ ( ( u ` 0 ) = ( u ` 0 ) /\ ( u ` 1 ) = ( u ` 1 ) /\ ( u ` 2 ) = ( u ` 2 ) ) ) ) -> u = <" ( u ` 0 ) ( u ` 1 ) ( u ` 2 ) "> ) | 
						
							| 54 | 9 47 30 51 53 | syl22anc |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> u = <" ( u ` 0 ) ( u ` 1 ) ( u ` 2 ) "> ) | 
						
							| 55 | 54 | fveq2d |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` u ) = ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) ( u ` 2 ) "> ) ) | 
						
							| 56 |  | wrddm |  |-  ( u e. Word D -> dom u = ( 0 ..^ ( # ` u ) ) ) | 
						
							| 57 | 9 56 | syl |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> dom u = ( 0 ..^ ( # ` u ) ) ) | 
						
							| 58 | 57 31 | eqtrd |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> dom u = ( 0 ..^ 3 ) ) | 
						
							| 59 | 58 21 | eqtrdi |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> dom u = { 0 , 1 , 2 } ) | 
						
							| 60 |  | f1eq2 |  |-  ( dom u = { 0 , 1 , 2 } -> ( u : dom u -1-1-> D <-> u : { 0 , 1 , 2 } -1-1-> D ) ) | 
						
							| 61 | 60 | biimpa |  |-  ( ( dom u = { 0 , 1 , 2 } /\ u : dom u -1-1-> D ) -> u : { 0 , 1 , 2 } -1-1-> D ) | 
						
							| 62 | 59 16 61 | syl2anc |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> u : { 0 , 1 , 2 } -1-1-> D ) | 
						
							| 63 | 19 35 41 | 3pm3.2i |  |-  ( 0 e. _V /\ 1 e. _V /\ 2 e. _V ) | 
						
							| 64 |  | 0ne1 |  |-  0 =/= 1 | 
						
							| 65 |  | 0ne2 |  |-  0 =/= 2 | 
						
							| 66 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 67 | 64 65 66 | 3pm3.2i |  |-  ( 0 =/= 1 /\ 0 =/= 2 /\ 1 =/= 2 ) | 
						
							| 68 |  | eqid |  |-  { 0 , 1 , 2 } = { 0 , 1 , 2 } | 
						
							| 69 | 68 | f13dfv |  |-  ( ( ( 0 e. _V /\ 1 e. _V /\ 2 e. _V ) /\ ( 0 =/= 1 /\ 0 =/= 2 /\ 1 =/= 2 ) ) -> ( u : { 0 , 1 , 2 } -1-1-> D <-> ( u : { 0 , 1 , 2 } --> D /\ ( ( u ` 0 ) =/= ( u ` 1 ) /\ ( u ` 0 ) =/= ( u ` 2 ) /\ ( u ` 1 ) =/= ( u ` 2 ) ) ) ) ) | 
						
							| 70 | 63 67 69 | mp2an |  |-  ( u : { 0 , 1 , 2 } -1-1-> D <-> ( u : { 0 , 1 , 2 } --> D /\ ( ( u ` 0 ) =/= ( u ` 1 ) /\ ( u ` 0 ) =/= ( u ` 2 ) /\ ( u ` 1 ) =/= ( u ` 2 ) ) ) ) | 
						
							| 71 | 70 | simprbi |  |-  ( u : { 0 , 1 , 2 } -1-1-> D -> ( ( u ` 0 ) =/= ( u ` 1 ) /\ ( u ` 0 ) =/= ( u ` 2 ) /\ ( u ` 1 ) =/= ( u ` 2 ) ) ) | 
						
							| 72 | 62 71 | syl |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( u ` 0 ) =/= ( u ` 1 ) /\ ( u ` 0 ) =/= ( u ` 2 ) /\ ( u ` 1 ) =/= ( u ` 2 ) ) ) | 
						
							| 73 | 72 | simp1d |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 0 ) =/= ( u ` 1 ) ) | 
						
							| 74 | 72 | simp3d |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 1 ) =/= ( u ` 2 ) ) | 
						
							| 75 | 72 | simp2d |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 0 ) =/= ( u ` 2 ) ) | 
						
							| 76 | 75 | necomd |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 2 ) =/= ( u ` 0 ) ) | 
						
							| 77 |  | eqid |  |-  ( +g ` ( SymGrp ` D ) ) = ( +g ` ( SymGrp ` D ) ) | 
						
							| 78 | 5 17 4 34 40 46 73 74 76 77 | cyc3co2 |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) ( u ` 2 ) "> ) = ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ( +g ` ( SymGrp ` D ) ) ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) | 
						
							| 79 | 5 4 34 46 75 17 | cycpm2cl |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) e. ( Base ` ( SymGrp ` D ) ) ) | 
						
							| 80 | 5 4 34 40 73 17 | cycpm2cl |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) e. ( Base ` ( SymGrp ` D ) ) ) | 
						
							| 81 |  | eqid |  |-  ( Base ` ( SymGrp ` D ) ) = ( Base ` ( SymGrp ` D ) ) | 
						
							| 82 | 17 81 77 | symgov |  |-  ( ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) e. ( Base ` ( SymGrp ` D ) ) /\ ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) e. ( Base ` ( SymGrp ` D ) ) ) -> ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ( +g ` ( SymGrp ` D ) ) ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) = ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) o. ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) | 
						
							| 83 | 79 80 82 | syl2anc |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ( +g ` ( SymGrp ` D ) ) ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) = ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) o. ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) | 
						
							| 84 | 55 78 83 | 3eqtrd |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` u ) = ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) o. ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) | 
						
							| 85 | 84 | fveq2d |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` u ) ) = ( ( pmSgn ` D ) ` ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) o. ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) ) | 
						
							| 86 |  | eqid |  |-  ( pmSgn ` D ) = ( pmSgn ` D ) | 
						
							| 87 | 17 86 81 | psgnco |  |-  ( ( D e. Fin /\ ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) e. ( Base ` ( SymGrp ` D ) ) /\ ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) e. ( Base ` ( SymGrp ` D ) ) ) -> ( ( pmSgn ` D ) ` ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) o. ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) = ( ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ) x. ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) ) | 
						
							| 88 | 4 79 80 87 | syl3anc |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( pmSgn ` D ) ` ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) o. ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) = ( ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ) x. ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) ) | 
						
							| 89 |  | eqid |  |-  ( pmTrsp ` D ) = ( pmTrsp ` D ) | 
						
							| 90 | 5 4 34 46 75 89 | cycpm2tr |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) = ( ( pmTrsp ` D ) ` { ( u ` 0 ) , ( u ` 2 ) } ) ) | 
						
							| 91 | 34 46 | prssd |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> { ( u ` 0 ) , ( u ` 2 ) } C_ D ) | 
						
							| 92 |  | enpr2 |  |-  ( ( ( u ` 0 ) e. D /\ ( u ` 2 ) e. D /\ ( u ` 0 ) =/= ( u ` 2 ) ) -> { ( u ` 0 ) , ( u ` 2 ) } ~~ 2o ) | 
						
							| 93 | 34 46 75 92 | syl3anc |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> { ( u ` 0 ) , ( u ` 2 ) } ~~ 2o ) | 
						
							| 94 |  | eqid |  |-  ran ( pmTrsp ` D ) = ran ( pmTrsp ` D ) | 
						
							| 95 | 89 94 | pmtrrn |  |-  ( ( D e. Fin /\ { ( u ` 0 ) , ( u ` 2 ) } C_ D /\ { ( u ` 0 ) , ( u ` 2 ) } ~~ 2o ) -> ( ( pmTrsp ` D ) ` { ( u ` 0 ) , ( u ` 2 ) } ) e. ran ( pmTrsp ` D ) ) | 
						
							| 96 | 4 91 93 95 | syl3anc |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( pmTrsp ` D ) ` { ( u ` 0 ) , ( u ` 2 ) } ) e. ran ( pmTrsp ` D ) ) | 
						
							| 97 | 90 96 | eqeltrd |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) e. ran ( pmTrsp ` D ) ) | 
						
							| 98 | 17 94 86 | psgnpmtr |  |-  ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) e. ran ( pmTrsp ` D ) -> ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ) = -u 1 ) | 
						
							| 99 | 97 98 | syl |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ) = -u 1 ) | 
						
							| 100 | 5 4 34 40 73 89 | cycpm2tr |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) = ( ( pmTrsp ` D ) ` { ( u ` 0 ) , ( u ` 1 ) } ) ) | 
						
							| 101 | 34 40 | prssd |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> { ( u ` 0 ) , ( u ` 1 ) } C_ D ) | 
						
							| 102 |  | enpr2 |  |-  ( ( ( u ` 0 ) e. D /\ ( u ` 1 ) e. D /\ ( u ` 0 ) =/= ( u ` 1 ) ) -> { ( u ` 0 ) , ( u ` 1 ) } ~~ 2o ) | 
						
							| 103 | 34 40 73 102 | syl3anc |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> { ( u ` 0 ) , ( u ` 1 ) } ~~ 2o ) | 
						
							| 104 | 89 94 | pmtrrn |  |-  ( ( D e. Fin /\ { ( u ` 0 ) , ( u ` 1 ) } C_ D /\ { ( u ` 0 ) , ( u ` 1 ) } ~~ 2o ) -> ( ( pmTrsp ` D ) ` { ( u ` 0 ) , ( u ` 1 ) } ) e. ran ( pmTrsp ` D ) ) | 
						
							| 105 | 4 101 103 104 | syl3anc |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( pmTrsp ` D ) ` { ( u ` 0 ) , ( u ` 1 ) } ) e. ran ( pmTrsp ` D ) ) | 
						
							| 106 | 100 105 | eqeltrd |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) e. ran ( pmTrsp ` D ) ) | 
						
							| 107 | 17 94 86 | psgnpmtr |  |-  ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) e. ran ( pmTrsp ` D ) -> ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) = -u 1 ) | 
						
							| 108 | 106 107 | syl |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) = -u 1 ) | 
						
							| 109 | 99 108 | oveq12d |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ) x. ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) = ( -u 1 x. -u 1 ) ) | 
						
							| 110 |  | neg1mulneg1e1 |  |-  ( -u 1 x. -u 1 ) = 1 | 
						
							| 111 | 109 110 | eqtrdi |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ) x. ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) = 1 ) | 
						
							| 112 | 85 88 111 | 3eqtrd |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` u ) ) = 1 ) | 
						
							| 113 | 17 81 86 | psgnevpmb |  |-  ( D e. Fin -> ( ( ( toCyc ` D ) ` u ) e. ( pmEven ` D ) <-> ( ( ( toCyc ` D ) ` u ) e. ( Base ` ( SymGrp ` D ) ) /\ ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` u ) ) = 1 ) ) ) | 
						
							| 114 | 113 | biimpar |  |-  ( ( D e. Fin /\ ( ( ( toCyc ` D ) ` u ) e. ( Base ` ( SymGrp ` D ) ) /\ ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` u ) ) = 1 ) ) -> ( ( toCyc ` D ) ` u ) e. ( pmEven ` D ) ) | 
						
							| 115 | 4 18 112 114 | syl12anc |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` u ) e. ( pmEven ` D ) ) | 
						
							| 116 | 115 2 | eleqtrrdi |  |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` u ) e. A ) | 
						
							| 117 | 116 | ad4ant13 |  |-  ( ( ( ( D e. Fin /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( ( toCyc ` D ) ` u ) = p ) -> ( ( toCyc ` D ) ` u ) e. A ) | 
						
							| 118 | 3 117 | eqeltrrd |  |-  ( ( ( ( D e. Fin /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( ( toCyc ` D ) ` u ) = p ) -> p e. A ) | 
						
							| 119 |  | nfcv |  |-  F/_ u ( toCyc ` D ) | 
						
							| 120 | 5 17 81 | tocycf |  |-  ( D e. Fin -> ( toCyc ` D ) : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` ( SymGrp ` D ) ) ) | 
						
							| 121 | 120 | ffnd |  |-  ( D e. Fin -> ( toCyc ` D ) Fn { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 122 | 121 | adantr |  |-  ( ( D e. Fin /\ p e. C ) -> ( toCyc ` D ) Fn { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 123 |  | simpr |  |-  ( ( D e. Fin /\ p e. C ) -> p e. C ) | 
						
							| 124 | 123 1 | eleqtrdi |  |-  ( ( D e. Fin /\ p e. C ) -> p e. ( ( toCyc ` D ) " ( `' # " { 3 } ) ) ) | 
						
							| 125 | 119 122 124 | fvelimad |  |-  ( ( D e. Fin /\ p e. C ) -> E. u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ( ( toCyc ` D ) ` u ) = p ) | 
						
							| 126 | 118 125 | r19.29a |  |-  ( ( D e. Fin /\ p e. C ) -> p e. A ) | 
						
							| 127 | 126 | ex |  |-  ( D e. Fin -> ( p e. C -> p e. A ) ) | 
						
							| 128 | 127 | ssrdv |  |-  ( D e. Fin -> C C_ A ) |