Step |
Hyp |
Ref |
Expression |
1 |
|
cyc3evpm.t |
|- C = ( ( toCyc ` D ) " ( `' # " { 3 } ) ) |
2 |
|
cyc3evpm.a |
|- A = ( pmEven ` D ) |
3 |
|
simpr |
|- ( ( ( ( D e. Fin /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( ( toCyc ` D ) ` u ) = p ) -> ( ( toCyc ` D ) ` u ) = p ) |
4 |
|
simpl |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> D e. Fin ) |
5 |
|
eqid |
|- ( toCyc ` D ) = ( toCyc ` D ) |
6 |
|
simpr |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) |
7 |
6
|
elin1d |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> u e. { w e. Word D | w : dom w -1-1-> D } ) |
8 |
|
elrabi |
|- ( u e. { w e. Word D | w : dom w -1-1-> D } -> u e. Word D ) |
9 |
7 8
|
syl |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> u e. Word D ) |
10 |
|
id |
|- ( w = u -> w = u ) |
11 |
|
dmeq |
|- ( w = u -> dom w = dom u ) |
12 |
|
eqidd |
|- ( w = u -> D = D ) |
13 |
10 11 12
|
f1eq123d |
|- ( w = u -> ( w : dom w -1-1-> D <-> u : dom u -1-1-> D ) ) |
14 |
13
|
elrab |
|- ( u e. { w e. Word D | w : dom w -1-1-> D } <-> ( u e. Word D /\ u : dom u -1-1-> D ) ) |
15 |
14
|
simprbi |
|- ( u e. { w e. Word D | w : dom w -1-1-> D } -> u : dom u -1-1-> D ) |
16 |
7 15
|
syl |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> u : dom u -1-1-> D ) |
17 |
|
eqid |
|- ( SymGrp ` D ) = ( SymGrp ` D ) |
18 |
5 4 9 16 17
|
cycpmcl |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` u ) e. ( Base ` ( SymGrp ` D ) ) ) |
19 |
|
c0ex |
|- 0 e. _V |
20 |
19
|
tpid1 |
|- 0 e. { 0 , 1 , 2 } |
21 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
22 |
20 21
|
eleqtrri |
|- 0 e. ( 0 ..^ 3 ) |
23 |
6
|
elin2d |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> u e. ( `' # " { 3 } ) ) |
24 |
|
hashf |
|- # : _V --> ( NN0 u. { +oo } ) |
25 |
|
ffn |
|- ( # : _V --> ( NN0 u. { +oo } ) -> # Fn _V ) |
26 |
|
elpreima |
|- ( # Fn _V -> ( u e. ( `' # " { 3 } ) <-> ( u e. _V /\ ( # ` u ) e. { 3 } ) ) ) |
27 |
24 25 26
|
mp2b |
|- ( u e. ( `' # " { 3 } ) <-> ( u e. _V /\ ( # ` u ) e. { 3 } ) ) |
28 |
27
|
simprbi |
|- ( u e. ( `' # " { 3 } ) -> ( # ` u ) e. { 3 } ) |
29 |
|
elsni |
|- ( ( # ` u ) e. { 3 } -> ( # ` u ) = 3 ) |
30 |
23 28 29
|
3syl |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( # ` u ) = 3 ) |
31 |
30
|
oveq2d |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( 0 ..^ ( # ` u ) ) = ( 0 ..^ 3 ) ) |
32 |
22 31
|
eleqtrrid |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> 0 e. ( 0 ..^ ( # ` u ) ) ) |
33 |
|
wrdsymbcl |
|- ( ( u e. Word D /\ 0 e. ( 0 ..^ ( # ` u ) ) ) -> ( u ` 0 ) e. D ) |
34 |
9 32 33
|
syl2anc |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 0 ) e. D ) |
35 |
|
1ex |
|- 1 e. _V |
36 |
35
|
tpid2 |
|- 1 e. { 0 , 1 , 2 } |
37 |
36 21
|
eleqtrri |
|- 1 e. ( 0 ..^ 3 ) |
38 |
37 31
|
eleqtrrid |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> 1 e. ( 0 ..^ ( # ` u ) ) ) |
39 |
|
wrdsymbcl |
|- ( ( u e. Word D /\ 1 e. ( 0 ..^ ( # ` u ) ) ) -> ( u ` 1 ) e. D ) |
40 |
9 38 39
|
syl2anc |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 1 ) e. D ) |
41 |
|
2ex |
|- 2 e. _V |
42 |
41
|
tpid3 |
|- 2 e. { 0 , 1 , 2 } |
43 |
42 21
|
eleqtrri |
|- 2 e. ( 0 ..^ 3 ) |
44 |
43 31
|
eleqtrrid |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> 2 e. ( 0 ..^ ( # ` u ) ) ) |
45 |
|
wrdsymbcl |
|- ( ( u e. Word D /\ 2 e. ( 0 ..^ ( # ` u ) ) ) -> ( u ` 2 ) e. D ) |
46 |
9 44 45
|
syl2anc |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 2 ) e. D ) |
47 |
34 40 46
|
3jca |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( u ` 0 ) e. D /\ ( u ` 1 ) e. D /\ ( u ` 2 ) e. D ) ) |
48 |
|
eqidd |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 0 ) = ( u ` 0 ) ) |
49 |
|
eqidd |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 1 ) = ( u ` 1 ) ) |
50 |
|
eqidd |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 2 ) = ( u ` 2 ) ) |
51 |
48 49 50
|
3jca |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( u ` 0 ) = ( u ` 0 ) /\ ( u ` 1 ) = ( u ` 1 ) /\ ( u ` 2 ) = ( u ` 2 ) ) ) |
52 |
|
eqwrds3 |
|- ( ( u e. Word D /\ ( ( u ` 0 ) e. D /\ ( u ` 1 ) e. D /\ ( u ` 2 ) e. D ) ) -> ( u = <" ( u ` 0 ) ( u ` 1 ) ( u ` 2 ) "> <-> ( ( # ` u ) = 3 /\ ( ( u ` 0 ) = ( u ` 0 ) /\ ( u ` 1 ) = ( u ` 1 ) /\ ( u ` 2 ) = ( u ` 2 ) ) ) ) ) |
53 |
52
|
biimpar |
|- ( ( ( u e. Word D /\ ( ( u ` 0 ) e. D /\ ( u ` 1 ) e. D /\ ( u ` 2 ) e. D ) ) /\ ( ( # ` u ) = 3 /\ ( ( u ` 0 ) = ( u ` 0 ) /\ ( u ` 1 ) = ( u ` 1 ) /\ ( u ` 2 ) = ( u ` 2 ) ) ) ) -> u = <" ( u ` 0 ) ( u ` 1 ) ( u ` 2 ) "> ) |
54 |
9 47 30 51 53
|
syl22anc |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> u = <" ( u ` 0 ) ( u ` 1 ) ( u ` 2 ) "> ) |
55 |
54
|
fveq2d |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` u ) = ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) ( u ` 2 ) "> ) ) |
56 |
|
wrddm |
|- ( u e. Word D -> dom u = ( 0 ..^ ( # ` u ) ) ) |
57 |
9 56
|
syl |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> dom u = ( 0 ..^ ( # ` u ) ) ) |
58 |
57 31
|
eqtrd |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> dom u = ( 0 ..^ 3 ) ) |
59 |
58 21
|
eqtrdi |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> dom u = { 0 , 1 , 2 } ) |
60 |
|
f1eq2 |
|- ( dom u = { 0 , 1 , 2 } -> ( u : dom u -1-1-> D <-> u : { 0 , 1 , 2 } -1-1-> D ) ) |
61 |
60
|
biimpa |
|- ( ( dom u = { 0 , 1 , 2 } /\ u : dom u -1-1-> D ) -> u : { 0 , 1 , 2 } -1-1-> D ) |
62 |
59 16 61
|
syl2anc |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> u : { 0 , 1 , 2 } -1-1-> D ) |
63 |
19 35 41
|
3pm3.2i |
|- ( 0 e. _V /\ 1 e. _V /\ 2 e. _V ) |
64 |
|
0ne1 |
|- 0 =/= 1 |
65 |
|
0ne2 |
|- 0 =/= 2 |
66 |
|
1ne2 |
|- 1 =/= 2 |
67 |
64 65 66
|
3pm3.2i |
|- ( 0 =/= 1 /\ 0 =/= 2 /\ 1 =/= 2 ) |
68 |
|
eqid |
|- { 0 , 1 , 2 } = { 0 , 1 , 2 } |
69 |
68
|
f13dfv |
|- ( ( ( 0 e. _V /\ 1 e. _V /\ 2 e. _V ) /\ ( 0 =/= 1 /\ 0 =/= 2 /\ 1 =/= 2 ) ) -> ( u : { 0 , 1 , 2 } -1-1-> D <-> ( u : { 0 , 1 , 2 } --> D /\ ( ( u ` 0 ) =/= ( u ` 1 ) /\ ( u ` 0 ) =/= ( u ` 2 ) /\ ( u ` 1 ) =/= ( u ` 2 ) ) ) ) ) |
70 |
63 67 69
|
mp2an |
|- ( u : { 0 , 1 , 2 } -1-1-> D <-> ( u : { 0 , 1 , 2 } --> D /\ ( ( u ` 0 ) =/= ( u ` 1 ) /\ ( u ` 0 ) =/= ( u ` 2 ) /\ ( u ` 1 ) =/= ( u ` 2 ) ) ) ) |
71 |
70
|
simprbi |
|- ( u : { 0 , 1 , 2 } -1-1-> D -> ( ( u ` 0 ) =/= ( u ` 1 ) /\ ( u ` 0 ) =/= ( u ` 2 ) /\ ( u ` 1 ) =/= ( u ` 2 ) ) ) |
72 |
62 71
|
syl |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( u ` 0 ) =/= ( u ` 1 ) /\ ( u ` 0 ) =/= ( u ` 2 ) /\ ( u ` 1 ) =/= ( u ` 2 ) ) ) |
73 |
72
|
simp1d |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 0 ) =/= ( u ` 1 ) ) |
74 |
72
|
simp3d |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 1 ) =/= ( u ` 2 ) ) |
75 |
72
|
simp2d |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 0 ) =/= ( u ` 2 ) ) |
76 |
75
|
necomd |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 2 ) =/= ( u ` 0 ) ) |
77 |
|
eqid |
|- ( +g ` ( SymGrp ` D ) ) = ( +g ` ( SymGrp ` D ) ) |
78 |
5 17 4 34 40 46 73 74 76 77
|
cyc3co2 |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) ( u ` 2 ) "> ) = ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ( +g ` ( SymGrp ` D ) ) ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) |
79 |
5 4 34 46 75 17
|
cycpm2cl |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) e. ( Base ` ( SymGrp ` D ) ) ) |
80 |
5 4 34 40 73 17
|
cycpm2cl |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) e. ( Base ` ( SymGrp ` D ) ) ) |
81 |
|
eqid |
|- ( Base ` ( SymGrp ` D ) ) = ( Base ` ( SymGrp ` D ) ) |
82 |
17 81 77
|
symgov |
|- ( ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) e. ( Base ` ( SymGrp ` D ) ) /\ ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) e. ( Base ` ( SymGrp ` D ) ) ) -> ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ( +g ` ( SymGrp ` D ) ) ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) = ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) o. ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) |
83 |
79 80 82
|
syl2anc |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ( +g ` ( SymGrp ` D ) ) ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) = ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) o. ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) |
84 |
55 78 83
|
3eqtrd |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` u ) = ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) o. ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) |
85 |
84
|
fveq2d |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` u ) ) = ( ( pmSgn ` D ) ` ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) o. ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) ) |
86 |
|
eqid |
|- ( pmSgn ` D ) = ( pmSgn ` D ) |
87 |
17 86 81
|
psgnco |
|- ( ( D e. Fin /\ ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) e. ( Base ` ( SymGrp ` D ) ) /\ ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) e. ( Base ` ( SymGrp ` D ) ) ) -> ( ( pmSgn ` D ) ` ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) o. ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) = ( ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ) x. ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) ) |
88 |
4 79 80 87
|
syl3anc |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( pmSgn ` D ) ` ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) o. ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) = ( ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ) x. ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) ) |
89 |
|
eqid |
|- ( pmTrsp ` D ) = ( pmTrsp ` D ) |
90 |
5 4 34 46 75 89
|
cycpm2tr |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) = ( ( pmTrsp ` D ) ` { ( u ` 0 ) , ( u ` 2 ) } ) ) |
91 |
34 46
|
prssd |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> { ( u ` 0 ) , ( u ` 2 ) } C_ D ) |
92 |
|
pr2nelem |
|- ( ( ( u ` 0 ) e. D /\ ( u ` 2 ) e. D /\ ( u ` 0 ) =/= ( u ` 2 ) ) -> { ( u ` 0 ) , ( u ` 2 ) } ~~ 2o ) |
93 |
34 46 75 92
|
syl3anc |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> { ( u ` 0 ) , ( u ` 2 ) } ~~ 2o ) |
94 |
|
eqid |
|- ran ( pmTrsp ` D ) = ran ( pmTrsp ` D ) |
95 |
89 94
|
pmtrrn |
|- ( ( D e. Fin /\ { ( u ` 0 ) , ( u ` 2 ) } C_ D /\ { ( u ` 0 ) , ( u ` 2 ) } ~~ 2o ) -> ( ( pmTrsp ` D ) ` { ( u ` 0 ) , ( u ` 2 ) } ) e. ran ( pmTrsp ` D ) ) |
96 |
4 91 93 95
|
syl3anc |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( pmTrsp ` D ) ` { ( u ` 0 ) , ( u ` 2 ) } ) e. ran ( pmTrsp ` D ) ) |
97 |
90 96
|
eqeltrd |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) e. ran ( pmTrsp ` D ) ) |
98 |
17 94 86
|
psgnpmtr |
|- ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) e. ran ( pmTrsp ` D ) -> ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ) = -u 1 ) |
99 |
97 98
|
syl |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ) = -u 1 ) |
100 |
5 4 34 40 73 89
|
cycpm2tr |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) = ( ( pmTrsp ` D ) ` { ( u ` 0 ) , ( u ` 1 ) } ) ) |
101 |
34 40
|
prssd |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> { ( u ` 0 ) , ( u ` 1 ) } C_ D ) |
102 |
|
pr2nelem |
|- ( ( ( u ` 0 ) e. D /\ ( u ` 1 ) e. D /\ ( u ` 0 ) =/= ( u ` 1 ) ) -> { ( u ` 0 ) , ( u ` 1 ) } ~~ 2o ) |
103 |
34 40 73 102
|
syl3anc |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> { ( u ` 0 ) , ( u ` 1 ) } ~~ 2o ) |
104 |
89 94
|
pmtrrn |
|- ( ( D e. Fin /\ { ( u ` 0 ) , ( u ` 1 ) } C_ D /\ { ( u ` 0 ) , ( u ` 1 ) } ~~ 2o ) -> ( ( pmTrsp ` D ) ` { ( u ` 0 ) , ( u ` 1 ) } ) e. ran ( pmTrsp ` D ) ) |
105 |
4 101 103 104
|
syl3anc |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( pmTrsp ` D ) ` { ( u ` 0 ) , ( u ` 1 ) } ) e. ran ( pmTrsp ` D ) ) |
106 |
100 105
|
eqeltrd |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) e. ran ( pmTrsp ` D ) ) |
107 |
17 94 86
|
psgnpmtr |
|- ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) e. ran ( pmTrsp ` D ) -> ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) = -u 1 ) |
108 |
106 107
|
syl |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) = -u 1 ) |
109 |
99 108
|
oveq12d |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ) x. ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) = ( -u 1 x. -u 1 ) ) |
110 |
|
neg1mulneg1e1 |
|- ( -u 1 x. -u 1 ) = 1 |
111 |
109 110
|
eqtrdi |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ) x. ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) = 1 ) |
112 |
85 88 111
|
3eqtrd |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` u ) ) = 1 ) |
113 |
17 81 86
|
psgnevpmb |
|- ( D e. Fin -> ( ( ( toCyc ` D ) ` u ) e. ( pmEven ` D ) <-> ( ( ( toCyc ` D ) ` u ) e. ( Base ` ( SymGrp ` D ) ) /\ ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` u ) ) = 1 ) ) ) |
114 |
113
|
biimpar |
|- ( ( D e. Fin /\ ( ( ( toCyc ` D ) ` u ) e. ( Base ` ( SymGrp ` D ) ) /\ ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` u ) ) = 1 ) ) -> ( ( toCyc ` D ) ` u ) e. ( pmEven ` D ) ) |
115 |
4 18 112 114
|
syl12anc |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` u ) e. ( pmEven ` D ) ) |
116 |
115 2
|
eleqtrrdi |
|- ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` u ) e. A ) |
117 |
116
|
ad4ant13 |
|- ( ( ( ( D e. Fin /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( ( toCyc ` D ) ` u ) = p ) -> ( ( toCyc ` D ) ` u ) e. A ) |
118 |
3 117
|
eqeltrrd |
|- ( ( ( ( D e. Fin /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( ( toCyc ` D ) ` u ) = p ) -> p e. A ) |
119 |
|
nfcv |
|- F/_ u ( toCyc ` D ) |
120 |
5 17 81
|
tocycf |
|- ( D e. Fin -> ( toCyc ` D ) : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` ( SymGrp ` D ) ) ) |
121 |
120
|
ffnd |
|- ( D e. Fin -> ( toCyc ` D ) Fn { w e. Word D | w : dom w -1-1-> D } ) |
122 |
121
|
adantr |
|- ( ( D e. Fin /\ p e. C ) -> ( toCyc ` D ) Fn { w e. Word D | w : dom w -1-1-> D } ) |
123 |
|
simpr |
|- ( ( D e. Fin /\ p e. C ) -> p e. C ) |
124 |
123 1
|
eleqtrdi |
|- ( ( D e. Fin /\ p e. C ) -> p e. ( ( toCyc ` D ) " ( `' # " { 3 } ) ) ) |
125 |
119 122 124
|
fvelimad |
|- ( ( D e. Fin /\ p e. C ) -> E. u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ( ( toCyc ` D ) ` u ) = p ) |
126 |
118 125
|
r19.29a |
|- ( ( D e. Fin /\ p e. C ) -> p e. A ) |
127 |
126
|
ex |
|- ( D e. Fin -> ( p e. C -> p e. A ) ) |
128 |
127
|
ssrdv |
|- ( D e. Fin -> C C_ A ) |