Metamath Proof Explorer


Theorem cyc3evpm

Description: 3-Cycles are even permutations. (Contributed by Thierry Arnoux, 24-Sep-2023)

Ref Expression
Hypotheses cyc3evpm.t
|- C = ( ( toCyc ` D ) " ( `' # " { 3 } ) )
cyc3evpm.a
|- A = ( pmEven ` D )
Assertion cyc3evpm
|- ( D e. Fin -> C C_ A )

Proof

Step Hyp Ref Expression
1 cyc3evpm.t
 |-  C = ( ( toCyc ` D ) " ( `' # " { 3 } ) )
2 cyc3evpm.a
 |-  A = ( pmEven ` D )
3 simpr
 |-  ( ( ( ( D e. Fin /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( ( toCyc ` D ) ` u ) = p ) -> ( ( toCyc ` D ) ` u ) = p )
4 simpl
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> D e. Fin )
5 eqid
 |-  ( toCyc ` D ) = ( toCyc ` D )
6 simpr
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) )
7 6 elin1d
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> u e. { w e. Word D | w : dom w -1-1-> D } )
8 elrabi
 |-  ( u e. { w e. Word D | w : dom w -1-1-> D } -> u e. Word D )
9 7 8 syl
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> u e. Word D )
10 id
 |-  ( w = u -> w = u )
11 dmeq
 |-  ( w = u -> dom w = dom u )
12 eqidd
 |-  ( w = u -> D = D )
13 10 11 12 f1eq123d
 |-  ( w = u -> ( w : dom w -1-1-> D <-> u : dom u -1-1-> D ) )
14 13 elrab
 |-  ( u e. { w e. Word D | w : dom w -1-1-> D } <-> ( u e. Word D /\ u : dom u -1-1-> D ) )
15 14 simprbi
 |-  ( u e. { w e. Word D | w : dom w -1-1-> D } -> u : dom u -1-1-> D )
16 7 15 syl
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> u : dom u -1-1-> D )
17 eqid
 |-  ( SymGrp ` D ) = ( SymGrp ` D )
18 5 4 9 16 17 cycpmcl
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` u ) e. ( Base ` ( SymGrp ` D ) ) )
19 c0ex
 |-  0 e. _V
20 19 tpid1
 |-  0 e. { 0 , 1 , 2 }
21 fzo0to3tp
 |-  ( 0 ..^ 3 ) = { 0 , 1 , 2 }
22 20 21 eleqtrri
 |-  0 e. ( 0 ..^ 3 )
23 6 elin2d
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> u e. ( `' # " { 3 } ) )
24 hashf
 |-  # : _V --> ( NN0 u. { +oo } )
25 ffn
 |-  ( # : _V --> ( NN0 u. { +oo } ) -> # Fn _V )
26 elpreima
 |-  ( # Fn _V -> ( u e. ( `' # " { 3 } ) <-> ( u e. _V /\ ( # ` u ) e. { 3 } ) ) )
27 24 25 26 mp2b
 |-  ( u e. ( `' # " { 3 } ) <-> ( u e. _V /\ ( # ` u ) e. { 3 } ) )
28 27 simprbi
 |-  ( u e. ( `' # " { 3 } ) -> ( # ` u ) e. { 3 } )
29 elsni
 |-  ( ( # ` u ) e. { 3 } -> ( # ` u ) = 3 )
30 23 28 29 3syl
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( # ` u ) = 3 )
31 30 oveq2d
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( 0 ..^ ( # ` u ) ) = ( 0 ..^ 3 ) )
32 22 31 eleqtrrid
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> 0 e. ( 0 ..^ ( # ` u ) ) )
33 wrdsymbcl
 |-  ( ( u e. Word D /\ 0 e. ( 0 ..^ ( # ` u ) ) ) -> ( u ` 0 ) e. D )
34 9 32 33 syl2anc
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 0 ) e. D )
35 1ex
 |-  1 e. _V
36 35 tpid2
 |-  1 e. { 0 , 1 , 2 }
37 36 21 eleqtrri
 |-  1 e. ( 0 ..^ 3 )
38 37 31 eleqtrrid
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> 1 e. ( 0 ..^ ( # ` u ) ) )
39 wrdsymbcl
 |-  ( ( u e. Word D /\ 1 e. ( 0 ..^ ( # ` u ) ) ) -> ( u ` 1 ) e. D )
40 9 38 39 syl2anc
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 1 ) e. D )
41 2ex
 |-  2 e. _V
42 41 tpid3
 |-  2 e. { 0 , 1 , 2 }
43 42 21 eleqtrri
 |-  2 e. ( 0 ..^ 3 )
44 43 31 eleqtrrid
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> 2 e. ( 0 ..^ ( # ` u ) ) )
45 wrdsymbcl
 |-  ( ( u e. Word D /\ 2 e. ( 0 ..^ ( # ` u ) ) ) -> ( u ` 2 ) e. D )
46 9 44 45 syl2anc
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 2 ) e. D )
47 34 40 46 3jca
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( u ` 0 ) e. D /\ ( u ` 1 ) e. D /\ ( u ` 2 ) e. D ) )
48 eqidd
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 0 ) = ( u ` 0 ) )
49 eqidd
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 1 ) = ( u ` 1 ) )
50 eqidd
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 2 ) = ( u ` 2 ) )
51 48 49 50 3jca
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( u ` 0 ) = ( u ` 0 ) /\ ( u ` 1 ) = ( u ` 1 ) /\ ( u ` 2 ) = ( u ` 2 ) ) )
52 eqwrds3
 |-  ( ( u e. Word D /\ ( ( u ` 0 ) e. D /\ ( u ` 1 ) e. D /\ ( u ` 2 ) e. D ) ) -> ( u = <" ( u ` 0 ) ( u ` 1 ) ( u ` 2 ) "> <-> ( ( # ` u ) = 3 /\ ( ( u ` 0 ) = ( u ` 0 ) /\ ( u ` 1 ) = ( u ` 1 ) /\ ( u ` 2 ) = ( u ` 2 ) ) ) ) )
53 52 biimpar
 |-  ( ( ( u e. Word D /\ ( ( u ` 0 ) e. D /\ ( u ` 1 ) e. D /\ ( u ` 2 ) e. D ) ) /\ ( ( # ` u ) = 3 /\ ( ( u ` 0 ) = ( u ` 0 ) /\ ( u ` 1 ) = ( u ` 1 ) /\ ( u ` 2 ) = ( u ` 2 ) ) ) ) -> u = <" ( u ` 0 ) ( u ` 1 ) ( u ` 2 ) "> )
54 9 47 30 51 53 syl22anc
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> u = <" ( u ` 0 ) ( u ` 1 ) ( u ` 2 ) "> )
55 54 fveq2d
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` u ) = ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) ( u ` 2 ) "> ) )
56 wrddm
 |-  ( u e. Word D -> dom u = ( 0 ..^ ( # ` u ) ) )
57 9 56 syl
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> dom u = ( 0 ..^ ( # ` u ) ) )
58 57 31 eqtrd
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> dom u = ( 0 ..^ 3 ) )
59 58 21 eqtrdi
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> dom u = { 0 , 1 , 2 } )
60 f1eq2
 |-  ( dom u = { 0 , 1 , 2 } -> ( u : dom u -1-1-> D <-> u : { 0 , 1 , 2 } -1-1-> D ) )
61 60 biimpa
 |-  ( ( dom u = { 0 , 1 , 2 } /\ u : dom u -1-1-> D ) -> u : { 0 , 1 , 2 } -1-1-> D )
62 59 16 61 syl2anc
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> u : { 0 , 1 , 2 } -1-1-> D )
63 19 35 41 3pm3.2i
 |-  ( 0 e. _V /\ 1 e. _V /\ 2 e. _V )
64 0ne1
 |-  0 =/= 1
65 0ne2
 |-  0 =/= 2
66 1ne2
 |-  1 =/= 2
67 64 65 66 3pm3.2i
 |-  ( 0 =/= 1 /\ 0 =/= 2 /\ 1 =/= 2 )
68 eqid
 |-  { 0 , 1 , 2 } = { 0 , 1 , 2 }
69 68 f13dfv
 |-  ( ( ( 0 e. _V /\ 1 e. _V /\ 2 e. _V ) /\ ( 0 =/= 1 /\ 0 =/= 2 /\ 1 =/= 2 ) ) -> ( u : { 0 , 1 , 2 } -1-1-> D <-> ( u : { 0 , 1 , 2 } --> D /\ ( ( u ` 0 ) =/= ( u ` 1 ) /\ ( u ` 0 ) =/= ( u ` 2 ) /\ ( u ` 1 ) =/= ( u ` 2 ) ) ) ) )
70 63 67 69 mp2an
 |-  ( u : { 0 , 1 , 2 } -1-1-> D <-> ( u : { 0 , 1 , 2 } --> D /\ ( ( u ` 0 ) =/= ( u ` 1 ) /\ ( u ` 0 ) =/= ( u ` 2 ) /\ ( u ` 1 ) =/= ( u ` 2 ) ) ) )
71 70 simprbi
 |-  ( u : { 0 , 1 , 2 } -1-1-> D -> ( ( u ` 0 ) =/= ( u ` 1 ) /\ ( u ` 0 ) =/= ( u ` 2 ) /\ ( u ` 1 ) =/= ( u ` 2 ) ) )
72 62 71 syl
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( u ` 0 ) =/= ( u ` 1 ) /\ ( u ` 0 ) =/= ( u ` 2 ) /\ ( u ` 1 ) =/= ( u ` 2 ) ) )
73 72 simp1d
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 0 ) =/= ( u ` 1 ) )
74 72 simp3d
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 1 ) =/= ( u ` 2 ) )
75 72 simp2d
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 0 ) =/= ( u ` 2 ) )
76 75 necomd
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( u ` 2 ) =/= ( u ` 0 ) )
77 eqid
 |-  ( +g ` ( SymGrp ` D ) ) = ( +g ` ( SymGrp ` D ) )
78 5 17 4 34 40 46 73 74 76 77 cyc3co2
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) ( u ` 2 ) "> ) = ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ( +g ` ( SymGrp ` D ) ) ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) )
79 5 4 34 46 75 17 cycpm2cl
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) e. ( Base ` ( SymGrp ` D ) ) )
80 5 4 34 40 73 17 cycpm2cl
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) e. ( Base ` ( SymGrp ` D ) ) )
81 eqid
 |-  ( Base ` ( SymGrp ` D ) ) = ( Base ` ( SymGrp ` D ) )
82 17 81 77 symgov
 |-  ( ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) e. ( Base ` ( SymGrp ` D ) ) /\ ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) e. ( Base ` ( SymGrp ` D ) ) ) -> ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ( +g ` ( SymGrp ` D ) ) ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) = ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) o. ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) )
83 79 80 82 syl2anc
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ( +g ` ( SymGrp ` D ) ) ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) = ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) o. ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) )
84 55 78 83 3eqtrd
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` u ) = ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) o. ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) )
85 84 fveq2d
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` u ) ) = ( ( pmSgn ` D ) ` ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) o. ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) )
86 eqid
 |-  ( pmSgn ` D ) = ( pmSgn ` D )
87 17 86 81 psgnco
 |-  ( ( D e. Fin /\ ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) e. ( Base ` ( SymGrp ` D ) ) /\ ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) e. ( Base ` ( SymGrp ` D ) ) ) -> ( ( pmSgn ` D ) ` ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) o. ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) = ( ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ) x. ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) )
88 4 79 80 87 syl3anc
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( pmSgn ` D ) ` ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) o. ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) = ( ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ) x. ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) )
89 eqid
 |-  ( pmTrsp ` D ) = ( pmTrsp ` D )
90 5 4 34 46 75 89 cycpm2tr
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) = ( ( pmTrsp ` D ) ` { ( u ` 0 ) , ( u ` 2 ) } ) )
91 34 46 prssd
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> { ( u ` 0 ) , ( u ` 2 ) } C_ D )
92 pr2nelem
 |-  ( ( ( u ` 0 ) e. D /\ ( u ` 2 ) e. D /\ ( u ` 0 ) =/= ( u ` 2 ) ) -> { ( u ` 0 ) , ( u ` 2 ) } ~~ 2o )
93 34 46 75 92 syl3anc
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> { ( u ` 0 ) , ( u ` 2 ) } ~~ 2o )
94 eqid
 |-  ran ( pmTrsp ` D ) = ran ( pmTrsp ` D )
95 89 94 pmtrrn
 |-  ( ( D e. Fin /\ { ( u ` 0 ) , ( u ` 2 ) } C_ D /\ { ( u ` 0 ) , ( u ` 2 ) } ~~ 2o ) -> ( ( pmTrsp ` D ) ` { ( u ` 0 ) , ( u ` 2 ) } ) e. ran ( pmTrsp ` D ) )
96 4 91 93 95 syl3anc
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( pmTrsp ` D ) ` { ( u ` 0 ) , ( u ` 2 ) } ) e. ran ( pmTrsp ` D ) )
97 90 96 eqeltrd
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) e. ran ( pmTrsp ` D ) )
98 17 94 86 psgnpmtr
 |-  ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) e. ran ( pmTrsp ` D ) -> ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ) = -u 1 )
99 97 98 syl
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ) = -u 1 )
100 5 4 34 40 73 89 cycpm2tr
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) = ( ( pmTrsp ` D ) ` { ( u ` 0 ) , ( u ` 1 ) } ) )
101 34 40 prssd
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> { ( u ` 0 ) , ( u ` 1 ) } C_ D )
102 pr2nelem
 |-  ( ( ( u ` 0 ) e. D /\ ( u ` 1 ) e. D /\ ( u ` 0 ) =/= ( u ` 1 ) ) -> { ( u ` 0 ) , ( u ` 1 ) } ~~ 2o )
103 34 40 73 102 syl3anc
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> { ( u ` 0 ) , ( u ` 1 ) } ~~ 2o )
104 89 94 pmtrrn
 |-  ( ( D e. Fin /\ { ( u ` 0 ) , ( u ` 1 ) } C_ D /\ { ( u ` 0 ) , ( u ` 1 ) } ~~ 2o ) -> ( ( pmTrsp ` D ) ` { ( u ` 0 ) , ( u ` 1 ) } ) e. ran ( pmTrsp ` D ) )
105 4 101 103 104 syl3anc
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( pmTrsp ` D ) ` { ( u ` 0 ) , ( u ` 1 ) } ) e. ran ( pmTrsp ` D ) )
106 100 105 eqeltrd
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) e. ran ( pmTrsp ` D ) )
107 17 94 86 psgnpmtr
 |-  ( ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) e. ran ( pmTrsp ` D ) -> ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) = -u 1 )
108 106 107 syl
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) = -u 1 )
109 99 108 oveq12d
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ) x. ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) = ( -u 1 x. -u 1 ) )
110 neg1mulneg1e1
 |-  ( -u 1 x. -u 1 ) = 1
111 109 110 eqtrdi
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 2 ) "> ) ) x. ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` <" ( u ` 0 ) ( u ` 1 ) "> ) ) ) = 1 )
112 85 88 111 3eqtrd
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` u ) ) = 1 )
113 17 81 86 psgnevpmb
 |-  ( D e. Fin -> ( ( ( toCyc ` D ) ` u ) e. ( pmEven ` D ) <-> ( ( ( toCyc ` D ) ` u ) e. ( Base ` ( SymGrp ` D ) ) /\ ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` u ) ) = 1 ) ) )
114 113 biimpar
 |-  ( ( D e. Fin /\ ( ( ( toCyc ` D ) ` u ) e. ( Base ` ( SymGrp ` D ) ) /\ ( ( pmSgn ` D ) ` ( ( toCyc ` D ) ` u ) ) = 1 ) ) -> ( ( toCyc ` D ) ` u ) e. ( pmEven ` D ) )
115 4 18 112 114 syl12anc
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` u ) e. ( pmEven ` D ) )
116 115 2 eleqtrrdi
 |-  ( ( D e. Fin /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) -> ( ( toCyc ` D ) ` u ) e. A )
117 116 ad4ant13
 |-  ( ( ( ( D e. Fin /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( ( toCyc ` D ) ` u ) = p ) -> ( ( toCyc ` D ) ` u ) e. A )
118 3 117 eqeltrrd
 |-  ( ( ( ( D e. Fin /\ p e. C ) /\ u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ) /\ ( ( toCyc ` D ) ` u ) = p ) -> p e. A )
119 nfcv
 |-  F/_ u ( toCyc ` D )
120 5 17 81 tocycf
 |-  ( D e. Fin -> ( toCyc ` D ) : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` ( SymGrp ` D ) ) )
121 120 ffnd
 |-  ( D e. Fin -> ( toCyc ` D ) Fn { w e. Word D | w : dom w -1-1-> D } )
122 121 adantr
 |-  ( ( D e. Fin /\ p e. C ) -> ( toCyc ` D ) Fn { w e. Word D | w : dom w -1-1-> D } )
123 simpr
 |-  ( ( D e. Fin /\ p e. C ) -> p e. C )
124 123 1 eleqtrdi
 |-  ( ( D e. Fin /\ p e. C ) -> p e. ( ( toCyc ` D ) " ( `' # " { 3 } ) ) )
125 119 122 124 fvelimad
 |-  ( ( D e. Fin /\ p e. C ) -> E. u e. ( { w e. Word D | w : dom w -1-1-> D } i^i ( `' # " { 3 } ) ) ( ( toCyc ` D ) ` u ) = p )
126 118 125 r19.29a
 |-  ( ( D e. Fin /\ p e. C ) -> p e. A )
127 126 ex
 |-  ( D e. Fin -> ( p e. C -> p e. A ) )
128 127 ssrdv
 |-  ( D e. Fin -> C C_ A )