| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cyc3genpm.t |  |-  C = ( M " ( `' # " { 3 } ) ) | 
						
							| 2 |  | cyc3genpm.a |  |-  A = ( pmEven ` D ) | 
						
							| 3 |  | cyc3genpm.s |  |-  S = ( SymGrp ` D ) | 
						
							| 4 |  | cyc3genpm.n |  |-  N = ( # ` D ) | 
						
							| 5 |  | cyc3genpm.m |  |-  M = ( toCyc ` D ) | 
						
							| 6 |  | cyc3genpmlem.t |  |-  .x. = ( +g ` S ) | 
						
							| 7 |  | cyc3genpmlem.i |  |-  ( ph -> I e. D ) | 
						
							| 8 |  | cyc3genpmlem.j |  |-  ( ph -> J e. D ) | 
						
							| 9 |  | cyc3genpmlem.k |  |-  ( ph -> K e. D ) | 
						
							| 10 |  | cyc3genpmlem.l |  |-  ( ph -> L e. D ) | 
						
							| 11 |  | cyc3genpmlem.e |  |-  ( ph -> E = ( M ` <" I J "> ) ) | 
						
							| 12 |  | cyc3genpmlem.f |  |-  ( ph -> F = ( M ` <" K L "> ) ) | 
						
							| 13 |  | cyc3genpmlem.d |  |-  ( ph -> D e. V ) | 
						
							| 14 |  | cyc3genpmlem.1 |  |-  ( ph -> I =/= J ) | 
						
							| 15 |  | cyc3genpmlem.2 |  |-  ( ph -> K =/= L ) | 
						
							| 16 |  | wrd0 |  |-  (/) e. Word C | 
						
							| 17 | 16 | a1i |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> (/) e. Word C ) | 
						
							| 18 |  | simpr |  |-  ( ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) /\ c = (/) ) -> c = (/) ) | 
						
							| 19 | 18 | oveq2d |  |-  ( ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) /\ c = (/) ) -> ( S gsum c ) = ( S gsum (/) ) ) | 
						
							| 20 | 19 | eqeq2d |  |-  ( ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) /\ c = (/) ) -> ( ( E .x. F ) = ( S gsum c ) <-> ( E .x. F ) = ( S gsum (/) ) ) ) | 
						
							| 21 | 5 13 7 8 14 3 | cycpm2cl |  |-  ( ph -> ( M ` <" I J "> ) e. ( Base ` S ) ) | 
						
							| 22 | 11 21 | eqeltrd |  |-  ( ph -> E e. ( Base ` S ) ) | 
						
							| 23 | 5 13 9 10 15 3 | cycpm2cl |  |-  ( ph -> ( M ` <" K L "> ) e. ( Base ` S ) ) | 
						
							| 24 | 12 23 | eqeltrd |  |-  ( ph -> F e. ( Base ` S ) ) | 
						
							| 25 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 26 | 3 25 6 | symgov |  |-  ( ( E e. ( Base ` S ) /\ F e. ( Base ` S ) ) -> ( E .x. F ) = ( E o. F ) ) | 
						
							| 27 | 22 24 26 | syl2anc |  |-  ( ph -> ( E .x. F ) = ( E o. F ) ) | 
						
							| 28 | 27 | ad2antrr |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> ( E .x. F ) = ( E o. F ) ) | 
						
							| 29 | 11 | ad2antrr |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> E = ( M ` <" I J "> ) ) | 
						
							| 30 |  | eqid |  |-  ( pmTrsp ` D ) = ( pmTrsp ` D ) | 
						
							| 31 | 5 13 7 8 14 30 | cycpm2tr |  |-  ( ph -> ( M ` <" I J "> ) = ( ( pmTrsp ` D ) ` { I , J } ) ) | 
						
							| 32 | 31 | ad2antrr |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> ( M ` <" I J "> ) = ( ( pmTrsp ` D ) ` { I , J } ) ) | 
						
							| 33 | 29 32 | eqtrd |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> E = ( ( pmTrsp ` D ) ` { I , J } ) ) | 
						
							| 34 | 5 13 9 10 15 30 | cycpm2tr |  |-  ( ph -> ( M ` <" K L "> ) = ( ( pmTrsp ` D ) ` { K , L } ) ) | 
						
							| 35 | 34 | ad2antrr |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> ( M ` <" K L "> ) = ( ( pmTrsp ` D ) ` { K , L } ) ) | 
						
							| 36 | 12 | ad2antrr |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> F = ( M ` <" K L "> ) ) | 
						
							| 37 | 7 | ad2antrr |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> I e. D ) | 
						
							| 38 | 8 | ad2antrr |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> J e. D ) | 
						
							| 39 | 14 | ad2antrr |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> I =/= J ) | 
						
							| 40 |  | simplr |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> I e. { K , L } ) | 
						
							| 41 |  | simpr |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> J e. { K , L } ) | 
						
							| 42 | 40 41 | prssd |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> { I , J } C_ { K , L } ) | 
						
							| 43 |  | ssprsseq |  |-  ( ( I e. D /\ J e. D /\ I =/= J ) -> ( { I , J } C_ { K , L } <-> { I , J } = { K , L } ) ) | 
						
							| 44 | 43 | biimpa |  |-  ( ( ( I e. D /\ J e. D /\ I =/= J ) /\ { I , J } C_ { K , L } ) -> { I , J } = { K , L } ) | 
						
							| 45 | 37 38 39 42 44 | syl31anc |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> { I , J } = { K , L } ) | 
						
							| 46 | 45 | fveq2d |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> ( ( pmTrsp ` D ) ` { I , J } ) = ( ( pmTrsp ` D ) ` { K , L } ) ) | 
						
							| 47 | 35 36 46 | 3eqtr4d |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> F = ( ( pmTrsp ` D ) ` { I , J } ) ) | 
						
							| 48 | 33 47 | coeq12d |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> ( E o. F ) = ( ( ( pmTrsp ` D ) ` { I , J } ) o. ( ( pmTrsp ` D ) ` { I , J } ) ) ) | 
						
							| 49 | 13 | ad2antrr |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> D e. V ) | 
						
							| 50 | 37 38 | prssd |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> { I , J } C_ D ) | 
						
							| 51 |  | enpr2 |  |-  ( ( I e. D /\ J e. D /\ I =/= J ) -> { I , J } ~~ 2o ) | 
						
							| 52 | 37 38 39 51 | syl3anc |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> { I , J } ~~ 2o ) | 
						
							| 53 |  | eqid |  |-  ran ( pmTrsp ` D ) = ran ( pmTrsp ` D ) | 
						
							| 54 | 30 53 | pmtrrn |  |-  ( ( D e. V /\ { I , J } C_ D /\ { I , J } ~~ 2o ) -> ( ( pmTrsp ` D ) ` { I , J } ) e. ran ( pmTrsp ` D ) ) | 
						
							| 55 | 49 50 52 54 | syl3anc |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> ( ( pmTrsp ` D ) ` { I , J } ) e. ran ( pmTrsp ` D ) ) | 
						
							| 56 | 30 53 | pmtrfinv |  |-  ( ( ( pmTrsp ` D ) ` { I , J } ) e. ran ( pmTrsp ` D ) -> ( ( ( pmTrsp ` D ) ` { I , J } ) o. ( ( pmTrsp ` D ) ` { I , J } ) ) = ( _I |` D ) ) | 
						
							| 57 | 55 56 | syl |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> ( ( ( pmTrsp ` D ) ` { I , J } ) o. ( ( pmTrsp ` D ) ` { I , J } ) ) = ( _I |` D ) ) | 
						
							| 58 | 28 48 57 | 3eqtrd |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> ( E .x. F ) = ( _I |` D ) ) | 
						
							| 59 | 3 | symgid |  |-  ( D e. V -> ( _I |` D ) = ( 0g ` S ) ) | 
						
							| 60 | 49 59 | syl |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> ( _I |` D ) = ( 0g ` S ) ) | 
						
							| 61 |  | eqid |  |-  ( 0g ` S ) = ( 0g ` S ) | 
						
							| 62 | 61 | gsum0 |  |-  ( S gsum (/) ) = ( 0g ` S ) | 
						
							| 63 | 60 62 | eqtr4di |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> ( _I |` D ) = ( S gsum (/) ) ) | 
						
							| 64 | 58 63 | eqtrd |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> ( E .x. F ) = ( S gsum (/) ) ) | 
						
							| 65 | 17 20 64 | rspcedvd |  |-  ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> E. c e. Word C ( E .x. F ) = ( S gsum c ) ) | 
						
							| 66 | 13 | ad2antrr |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> D e. V ) | 
						
							| 67 | 7 | ad2antrr |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> I e. D ) | 
						
							| 68 | 9 10 | prssd |  |-  ( ph -> { K , L } C_ D ) | 
						
							| 69 | 68 | ad2antrr |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> { K , L } C_ D ) | 
						
							| 70 |  | simplr |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> I e. { K , L } ) | 
						
							| 71 |  | enpr2 |  |-  ( ( K e. D /\ L e. D /\ K =/= L ) -> { K , L } ~~ 2o ) | 
						
							| 72 | 9 10 15 71 | syl3anc |  |-  ( ph -> { K , L } ~~ 2o ) | 
						
							| 73 | 72 | ad2antrr |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> { K , L } ~~ 2o ) | 
						
							| 74 |  | unidifsnel |  |-  ( ( I e. { K , L } /\ { K , L } ~~ 2o ) -> U. ( { K , L } \ { I } ) e. { K , L } ) | 
						
							| 75 | 70 73 74 | syl2anc |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> U. ( { K , L } \ { I } ) e. { K , L } ) | 
						
							| 76 | 69 75 | sseldd |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> U. ( { K , L } \ { I } ) e. D ) | 
						
							| 77 | 8 | ad2antrr |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> J e. D ) | 
						
							| 78 |  | unidifsnne |  |-  ( ( I e. { K , L } /\ { K , L } ~~ 2o ) -> U. ( { K , L } \ { I } ) =/= I ) | 
						
							| 79 | 70 73 78 | syl2anc |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> U. ( { K , L } \ { I } ) =/= I ) | 
						
							| 80 | 79 | necomd |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> I =/= U. ( { K , L } \ { I } ) ) | 
						
							| 81 |  | nelne2 |  |-  ( ( U. ( { K , L } \ { I } ) e. { K , L } /\ -. J e. { K , L } ) -> U. ( { K , L } \ { I } ) =/= J ) | 
						
							| 82 | 75 81 | sylancom |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> U. ( { K , L } \ { I } ) =/= J ) | 
						
							| 83 | 14 | necomd |  |-  ( ph -> J =/= I ) | 
						
							| 84 | 83 | ad2antrr |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> J =/= I ) | 
						
							| 85 | 5 3 66 67 76 77 80 82 84 | cycpm3cl2 |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" I U. ( { K , L } \ { I } ) J "> ) e. ( M " ( `' # " { 3 } ) ) ) | 
						
							| 86 | 85 1 | eleqtrrdi |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" I U. ( { K , L } \ { I } ) J "> ) e. C ) | 
						
							| 87 | 86 | s1cld |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> <" ( M ` <" I U. ( { K , L } \ { I } ) J "> ) "> e. Word C ) | 
						
							| 88 |  | simpr |  |-  ( ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) /\ c = <" ( M ` <" I U. ( { K , L } \ { I } ) J "> ) "> ) -> c = <" ( M ` <" I U. ( { K , L } \ { I } ) J "> ) "> ) | 
						
							| 89 | 88 | oveq2d |  |-  ( ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) /\ c = <" ( M ` <" I U. ( { K , L } \ { I } ) J "> ) "> ) -> ( S gsum c ) = ( S gsum <" ( M ` <" I U. ( { K , L } \ { I } ) J "> ) "> ) ) | 
						
							| 90 | 89 | eqeq2d |  |-  ( ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) /\ c = <" ( M ` <" I U. ( { K , L } \ { I } ) J "> ) "> ) -> ( ( E .x. F ) = ( S gsum c ) <-> ( E .x. F ) = ( S gsum <" ( M ` <" I U. ( { K , L } \ { I } ) J "> ) "> ) ) ) | 
						
							| 91 | 5 3 66 67 76 77 80 82 84 6 | cyc3co2 |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" I U. ( { K , L } \ { I } ) J "> ) = ( ( M ` <" I J "> ) .x. ( M ` <" I U. ( { K , L } \ { I } ) "> ) ) ) | 
						
							| 92 | 5 3 66 67 76 77 80 82 84 | cycpm3cl |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" I U. ( { K , L } \ { I } ) J "> ) e. ( Base ` S ) ) | 
						
							| 93 | 25 | gsumws1 |  |-  ( ( M ` <" I U. ( { K , L } \ { I } ) J "> ) e. ( Base ` S ) -> ( S gsum <" ( M ` <" I U. ( { K , L } \ { I } ) J "> ) "> ) = ( M ` <" I U. ( { K , L } \ { I } ) J "> ) ) | 
						
							| 94 | 92 93 | syl |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> ( S gsum <" ( M ` <" I U. ( { K , L } \ { I } ) J "> ) "> ) = ( M ` <" I U. ( { K , L } \ { I } ) J "> ) ) | 
						
							| 95 | 11 | ad2antrr |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> E = ( M ` <" I J "> ) ) | 
						
							| 96 |  | en2eleq |  |-  ( ( I e. { K , L } /\ { K , L } ~~ 2o ) -> { K , L } = { I , U. ( { K , L } \ { I } ) } ) | 
						
							| 97 | 70 73 96 | syl2anc |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> { K , L } = { I , U. ( { K , L } \ { I } ) } ) | 
						
							| 98 | 97 | fveq2d |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( pmTrsp ` D ) ` { K , L } ) = ( ( pmTrsp ` D ) ` { I , U. ( { K , L } \ { I } ) } ) ) | 
						
							| 99 | 12 34 | eqtrd |  |-  ( ph -> F = ( ( pmTrsp ` D ) ` { K , L } ) ) | 
						
							| 100 | 99 | ad2antrr |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> F = ( ( pmTrsp ` D ) ` { K , L } ) ) | 
						
							| 101 | 5 66 67 76 80 30 | cycpm2tr |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" I U. ( { K , L } \ { I } ) "> ) = ( ( pmTrsp ` D ) ` { I , U. ( { K , L } \ { I } ) } ) ) | 
						
							| 102 | 98 100 101 | 3eqtr4d |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> F = ( M ` <" I U. ( { K , L } \ { I } ) "> ) ) | 
						
							| 103 | 95 102 | oveq12d |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> ( E .x. F ) = ( ( M ` <" I J "> ) .x. ( M ` <" I U. ( { K , L } \ { I } ) "> ) ) ) | 
						
							| 104 | 91 94 103 | 3eqtr4rd |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> ( E .x. F ) = ( S gsum <" ( M ` <" I U. ( { K , L } \ { I } ) J "> ) "> ) ) | 
						
							| 105 | 87 90 104 | rspcedvd |  |-  ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> E. c e. Word C ( E .x. F ) = ( S gsum c ) ) | 
						
							| 106 | 65 105 | pm2.61dan |  |-  ( ( ph /\ I e. { K , L } ) -> E. c e. Word C ( E .x. F ) = ( S gsum c ) ) | 
						
							| 107 | 13 | ad2antrr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> D e. V ) | 
						
							| 108 | 8 | ad2antrr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> J e. D ) | 
						
							| 109 | 68 | ad2antrr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> { K , L } C_ D ) | 
						
							| 110 |  | simpr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> J e. { K , L } ) | 
						
							| 111 | 72 | ad2antrr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> { K , L } ~~ 2o ) | 
						
							| 112 |  | unidifsnel |  |-  ( ( J e. { K , L } /\ { K , L } ~~ 2o ) -> U. ( { K , L } \ { J } ) e. { K , L } ) | 
						
							| 113 | 110 111 112 | syl2anc |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> U. ( { K , L } \ { J } ) e. { K , L } ) | 
						
							| 114 | 109 113 | sseldd |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> U. ( { K , L } \ { J } ) e. D ) | 
						
							| 115 | 7 | ad2antrr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> I e. D ) | 
						
							| 116 |  | unidifsnne |  |-  ( ( J e. { K , L } /\ { K , L } ~~ 2o ) -> U. ( { K , L } \ { J } ) =/= J ) | 
						
							| 117 | 110 111 116 | syl2anc |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> U. ( { K , L } \ { J } ) =/= J ) | 
						
							| 118 | 117 | necomd |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> J =/= U. ( { K , L } \ { J } ) ) | 
						
							| 119 |  | simplr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> -. I e. { K , L } ) | 
						
							| 120 |  | nelne2 |  |-  ( ( U. ( { K , L } \ { J } ) e. { K , L } /\ -. I e. { K , L } ) -> U. ( { K , L } \ { J } ) =/= I ) | 
						
							| 121 | 113 119 120 | syl2anc |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> U. ( { K , L } \ { J } ) =/= I ) | 
						
							| 122 | 14 | ad2antrr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> I =/= J ) | 
						
							| 123 | 5 3 107 108 114 115 118 121 122 | cycpm3cl2 |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> ( M ` <" J U. ( { K , L } \ { J } ) I "> ) e. ( M " ( `' # " { 3 } ) ) ) | 
						
							| 124 | 123 1 | eleqtrrdi |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> ( M ` <" J U. ( { K , L } \ { J } ) I "> ) e. C ) | 
						
							| 125 | 124 | s1cld |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> <" ( M ` <" J U. ( { K , L } \ { J } ) I "> ) "> e. Word C ) | 
						
							| 126 |  | simpr |  |-  ( ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) /\ c = <" ( M ` <" J U. ( { K , L } \ { J } ) I "> ) "> ) -> c = <" ( M ` <" J U. ( { K , L } \ { J } ) I "> ) "> ) | 
						
							| 127 | 126 | oveq2d |  |-  ( ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) /\ c = <" ( M ` <" J U. ( { K , L } \ { J } ) I "> ) "> ) -> ( S gsum c ) = ( S gsum <" ( M ` <" J U. ( { K , L } \ { J } ) I "> ) "> ) ) | 
						
							| 128 | 127 | eqeq2d |  |-  ( ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) /\ c = <" ( M ` <" J U. ( { K , L } \ { J } ) I "> ) "> ) -> ( ( E .x. F ) = ( S gsum c ) <-> ( E .x. F ) = ( S gsum <" ( M ` <" J U. ( { K , L } \ { J } ) I "> ) "> ) ) ) | 
						
							| 129 | 5 3 107 108 114 115 118 121 122 6 | cyc3co2 |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> ( M ` <" J U. ( { K , L } \ { J } ) I "> ) = ( ( M ` <" J I "> ) .x. ( M ` <" J U. ( { K , L } \ { J } ) "> ) ) ) | 
						
							| 130 | 5 3 107 108 114 115 118 121 122 | cycpm3cl |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> ( M ` <" J U. ( { K , L } \ { J } ) I "> ) e. ( Base ` S ) ) | 
						
							| 131 | 25 | gsumws1 |  |-  ( ( M ` <" J U. ( { K , L } \ { J } ) I "> ) e. ( Base ` S ) -> ( S gsum <" ( M ` <" J U. ( { K , L } \ { J } ) I "> ) "> ) = ( M ` <" J U. ( { K , L } \ { J } ) I "> ) ) | 
						
							| 132 | 130 131 | syl |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> ( S gsum <" ( M ` <" J U. ( { K , L } \ { J } ) I "> ) "> ) = ( M ` <" J U. ( { K , L } \ { J } ) I "> ) ) | 
						
							| 133 |  | prcom |  |-  { I , J } = { J , I } | 
						
							| 134 | 133 | fveq2i |  |-  ( ( pmTrsp ` D ) ` { I , J } ) = ( ( pmTrsp ` D ) ` { J , I } ) | 
						
							| 135 | 5 13 8 7 83 30 | cycpm2tr |  |-  ( ph -> ( M ` <" J I "> ) = ( ( pmTrsp ` D ) ` { J , I } ) ) | 
						
							| 136 | 134 31 135 | 3eqtr4a |  |-  ( ph -> ( M ` <" I J "> ) = ( M ` <" J I "> ) ) | 
						
							| 137 | 11 136 | eqtrd |  |-  ( ph -> E = ( M ` <" J I "> ) ) | 
						
							| 138 | 137 | ad2antrr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> E = ( M ` <" J I "> ) ) | 
						
							| 139 |  | en2eleq |  |-  ( ( J e. { K , L } /\ { K , L } ~~ 2o ) -> { K , L } = { J , U. ( { K , L } \ { J } ) } ) | 
						
							| 140 | 110 111 139 | syl2anc |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> { K , L } = { J , U. ( { K , L } \ { J } ) } ) | 
						
							| 141 | 140 | fveq2d |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> ( ( pmTrsp ` D ) ` { K , L } ) = ( ( pmTrsp ` D ) ` { J , U. ( { K , L } \ { J } ) } ) ) | 
						
							| 142 | 99 | ad2antrr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> F = ( ( pmTrsp ` D ) ` { K , L } ) ) | 
						
							| 143 | 5 107 108 114 118 30 | cycpm2tr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> ( M ` <" J U. ( { K , L } \ { J } ) "> ) = ( ( pmTrsp ` D ) ` { J , U. ( { K , L } \ { J } ) } ) ) | 
						
							| 144 | 141 142 143 | 3eqtr4d |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> F = ( M ` <" J U. ( { K , L } \ { J } ) "> ) ) | 
						
							| 145 | 138 144 | oveq12d |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> ( E .x. F ) = ( ( M ` <" J I "> ) .x. ( M ` <" J U. ( { K , L } \ { J } ) "> ) ) ) | 
						
							| 146 | 129 132 145 | 3eqtr4rd |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> ( E .x. F ) = ( S gsum <" ( M ` <" J U. ( { K , L } \ { J } ) I "> ) "> ) ) | 
						
							| 147 | 125 128 146 | rspcedvd |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> E. c e. Word C ( E .x. F ) = ( S gsum c ) ) | 
						
							| 148 | 13 | ad2antrr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> D e. V ) | 
						
							| 149 | 8 | ad2antrr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> J e. D ) | 
						
							| 150 | 9 | ad2antrr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> K e. D ) | 
						
							| 151 | 7 | ad2antrr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> I e. D ) | 
						
							| 152 |  | simpr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> -. J e. { K , L } ) | 
						
							| 153 | 149 152 | nelpr1 |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> J =/= K ) | 
						
							| 154 |  | prid1g |  |-  ( K e. D -> K e. { K , L } ) | 
						
							| 155 | 9 154 | syl |  |-  ( ph -> K e. { K , L } ) | 
						
							| 156 | 155 | ad2antrr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> K e. { K , L } ) | 
						
							| 157 |  | simplr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> -. I e. { K , L } ) | 
						
							| 158 |  | nelne2 |  |-  ( ( K e. { K , L } /\ -. I e. { K , L } ) -> K =/= I ) | 
						
							| 159 | 156 157 158 | syl2anc |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> K =/= I ) | 
						
							| 160 | 14 | ad2antrr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> I =/= J ) | 
						
							| 161 | 5 3 148 149 150 151 153 159 160 | cycpm3cl2 |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" J K I "> ) e. ( M " ( `' # " { 3 } ) ) ) | 
						
							| 162 | 161 1 | eleqtrrdi |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" J K I "> ) e. C ) | 
						
							| 163 | 10 | ad2antrr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> L e. D ) | 
						
							| 164 | 15 | ad2antrr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> K =/= L ) | 
						
							| 165 |  | prid2g |  |-  ( L e. D -> L e. { K , L } ) | 
						
							| 166 | 163 165 | syl |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> L e. { K , L } ) | 
						
							| 167 |  | nelne2 |  |-  ( ( L e. { K , L } /\ -. J e. { K , L } ) -> L =/= J ) | 
						
							| 168 | 166 167 | sylancom |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> L =/= J ) | 
						
							| 169 | 5 3 148 150 163 149 164 168 153 | cycpm3cl2 |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" K L J "> ) e. ( M " ( `' # " { 3 } ) ) ) | 
						
							| 170 | 169 1 | eleqtrrdi |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" K L J "> ) e. C ) | 
						
							| 171 | 162 170 | s2cld |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> <" ( M ` <" J K I "> ) ( M ` <" K L J "> ) "> e. Word C ) | 
						
							| 172 |  | simpr |  |-  ( ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) /\ c = <" ( M ` <" J K I "> ) ( M ` <" K L J "> ) "> ) -> c = <" ( M ` <" J K I "> ) ( M ` <" K L J "> ) "> ) | 
						
							| 173 | 172 | oveq2d |  |-  ( ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) /\ c = <" ( M ` <" J K I "> ) ( M ` <" K L J "> ) "> ) -> ( S gsum c ) = ( S gsum <" ( M ` <" J K I "> ) ( M ` <" K L J "> ) "> ) ) | 
						
							| 174 | 173 | eqeq2d |  |-  ( ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) /\ c = <" ( M ` <" J K I "> ) ( M ` <" K L J "> ) "> ) -> ( ( E .x. F ) = ( S gsum c ) <-> ( E .x. F ) = ( S gsum <" ( M ` <" J K I "> ) ( M ` <" K L J "> ) "> ) ) ) | 
						
							| 175 | 148 59 | syl |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( _I |` D ) = ( 0g ` S ) ) | 
						
							| 176 | 175 | oveq1d |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( _I |` D ) .x. ( M ` <" K L "> ) ) = ( ( 0g ` S ) .x. ( M ` <" K L "> ) ) ) | 
						
							| 177 | 3 | symggrp |  |-  ( D e. V -> S e. Grp ) | 
						
							| 178 | 13 177 | syl |  |-  ( ph -> S e. Grp ) | 
						
							| 179 | 178 | ad2antrr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> S e. Grp ) | 
						
							| 180 | 23 | ad2antrr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" K L "> ) e. ( Base ` S ) ) | 
						
							| 181 | 25 6 61 | grplid |  |-  ( ( S e. Grp /\ ( M ` <" K L "> ) e. ( Base ` S ) ) -> ( ( 0g ` S ) .x. ( M ` <" K L "> ) ) = ( M ` <" K L "> ) ) | 
						
							| 182 | 179 180 181 | syl2anc |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( 0g ` S ) .x. ( M ` <" K L "> ) ) = ( M ` <" K L "> ) ) | 
						
							| 183 | 176 182 | eqtrd |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( _I |` D ) .x. ( M ` <" K L "> ) ) = ( M ` <" K L "> ) ) | 
						
							| 184 | 183 | oveq2d |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( M ` <" I J "> ) .x. ( ( _I |` D ) .x. ( M ` <" K L "> ) ) ) = ( ( M ` <" I J "> ) .x. ( M ` <" K L "> ) ) ) | 
						
							| 185 | 21 | ad2antrr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" I J "> ) e. ( Base ` S ) ) | 
						
							| 186 | 5 148 149 150 153 30 | cycpm2tr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" J K "> ) = ( ( pmTrsp ` D ) ` { J , K } ) ) | 
						
							| 187 | 53 3 25 | symgtrf |  |-  ran ( pmTrsp ` D ) C_ ( Base ` S ) | 
						
							| 188 | 8 9 | prssd |  |-  ( ph -> { J , K } C_ D ) | 
						
							| 189 | 188 | ad2antrr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> { J , K } C_ D ) | 
						
							| 190 |  | enpr2 |  |-  ( ( J e. D /\ K e. D /\ J =/= K ) -> { J , K } ~~ 2o ) | 
						
							| 191 | 149 150 153 190 | syl3anc |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> { J , K } ~~ 2o ) | 
						
							| 192 | 30 53 | pmtrrn |  |-  ( ( D e. V /\ { J , K } C_ D /\ { J , K } ~~ 2o ) -> ( ( pmTrsp ` D ) ` { J , K } ) e. ran ( pmTrsp ` D ) ) | 
						
							| 193 | 148 189 191 192 | syl3anc |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( pmTrsp ` D ) ` { J , K } ) e. ran ( pmTrsp ` D ) ) | 
						
							| 194 | 187 193 | sselid |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( pmTrsp ` D ) ` { J , K } ) e. ( Base ` S ) ) | 
						
							| 195 | 186 194 | eqeltrd |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" J K "> ) e. ( Base ` S ) ) | 
						
							| 196 | 153 | necomd |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> K =/= J ) | 
						
							| 197 | 5 148 150 149 196 30 | cycpm2tr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" K J "> ) = ( ( pmTrsp ` D ) ` { K , J } ) ) | 
						
							| 198 |  | prcom |  |-  { J , K } = { K , J } | 
						
							| 199 | 198 | a1i |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> { J , K } = { K , J } ) | 
						
							| 200 | 199 | fveq2d |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( pmTrsp ` D ) ` { J , K } ) = ( ( pmTrsp ` D ) ` { K , J } ) ) | 
						
							| 201 | 197 200 | eqtr4d |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" K J "> ) = ( ( pmTrsp ` D ) ` { J , K } ) ) | 
						
							| 202 | 201 194 | eqeltrd |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" K J "> ) e. ( Base ` S ) ) | 
						
							| 203 | 25 6 | grpcl |  |-  ( ( S e. Grp /\ ( M ` <" K J "> ) e. ( Base ` S ) /\ ( M ` <" K L "> ) e. ( Base ` S ) ) -> ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) e. ( Base ` S ) ) | 
						
							| 204 | 179 202 180 203 | syl3anc |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) e. ( Base ` S ) ) | 
						
							| 205 | 25 6 | grpass |  |-  ( ( S e. Grp /\ ( ( M ` <" I J "> ) e. ( Base ` S ) /\ ( M ` <" J K "> ) e. ( Base ` S ) /\ ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) e. ( Base ` S ) ) ) -> ( ( ( M ` <" I J "> ) .x. ( M ` <" J K "> ) ) .x. ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) ) = ( ( M ` <" I J "> ) .x. ( ( M ` <" J K "> ) .x. ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) ) ) ) | 
						
							| 206 | 179 185 195 204 205 | syl13anc |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( ( M ` <" I J "> ) .x. ( M ` <" J K "> ) ) .x. ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) ) = ( ( M ` <" I J "> ) .x. ( ( M ` <" J K "> ) .x. ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) ) ) ) | 
						
							| 207 | 25 6 | grpass |  |-  ( ( S e. Grp /\ ( ( M ` <" J K "> ) e. ( Base ` S ) /\ ( M ` <" K J "> ) e. ( Base ` S ) /\ ( M ` <" K L "> ) e. ( Base ` S ) ) ) -> ( ( ( M ` <" J K "> ) .x. ( M ` <" K J "> ) ) .x. ( M ` <" K L "> ) ) = ( ( M ` <" J K "> ) .x. ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) ) ) | 
						
							| 208 | 179 195 202 180 207 | syl13anc |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( ( M ` <" J K "> ) .x. ( M ` <" K J "> ) ) .x. ( M ` <" K L "> ) ) = ( ( M ` <" J K "> ) .x. ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) ) ) | 
						
							| 209 | 208 | oveq2d |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( M ` <" I J "> ) .x. ( ( ( M ` <" J K "> ) .x. ( M ` <" K J "> ) ) .x. ( M ` <" K L "> ) ) ) = ( ( M ` <" I J "> ) .x. ( ( M ` <" J K "> ) .x. ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) ) ) ) | 
						
							| 210 | 186 201 | oveq12d |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( M ` <" J K "> ) .x. ( M ` <" K J "> ) ) = ( ( ( pmTrsp ` D ) ` { J , K } ) .x. ( ( pmTrsp ` D ) ` { J , K } ) ) ) | 
						
							| 211 | 3 25 6 | symgov |  |-  ( ( ( ( pmTrsp ` D ) ` { J , K } ) e. ( Base ` S ) /\ ( ( pmTrsp ` D ) ` { J , K } ) e. ( Base ` S ) ) -> ( ( ( pmTrsp ` D ) ` { J , K } ) .x. ( ( pmTrsp ` D ) ` { J , K } ) ) = ( ( ( pmTrsp ` D ) ` { J , K } ) o. ( ( pmTrsp ` D ) ` { J , K } ) ) ) | 
						
							| 212 | 194 194 211 | syl2anc |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( ( pmTrsp ` D ) ` { J , K } ) .x. ( ( pmTrsp ` D ) ` { J , K } ) ) = ( ( ( pmTrsp ` D ) ` { J , K } ) o. ( ( pmTrsp ` D ) ` { J , K } ) ) ) | 
						
							| 213 | 30 53 | pmtrfinv |  |-  ( ( ( pmTrsp ` D ) ` { J , K } ) e. ran ( pmTrsp ` D ) -> ( ( ( pmTrsp ` D ) ` { J , K } ) o. ( ( pmTrsp ` D ) ` { J , K } ) ) = ( _I |` D ) ) | 
						
							| 214 | 193 213 | syl |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( ( pmTrsp ` D ) ` { J , K } ) o. ( ( pmTrsp ` D ) ` { J , K } ) ) = ( _I |` D ) ) | 
						
							| 215 | 210 212 214 | 3eqtrd |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( M ` <" J K "> ) .x. ( M ` <" K J "> ) ) = ( _I |` D ) ) | 
						
							| 216 | 215 | oveq1d |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( ( M ` <" J K "> ) .x. ( M ` <" K J "> ) ) .x. ( M ` <" K L "> ) ) = ( ( _I |` D ) .x. ( M ` <" K L "> ) ) ) | 
						
							| 217 | 216 | oveq2d |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( M ` <" I J "> ) .x. ( ( ( M ` <" J K "> ) .x. ( M ` <" K J "> ) ) .x. ( M ` <" K L "> ) ) ) = ( ( M ` <" I J "> ) .x. ( ( _I |` D ) .x. ( M ` <" K L "> ) ) ) ) | 
						
							| 218 | 206 209 217 | 3eqtr2rd |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( M ` <" I J "> ) .x. ( ( _I |` D ) .x. ( M ` <" K L "> ) ) ) = ( ( ( M ` <" I J "> ) .x. ( M ` <" J K "> ) ) .x. ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) ) ) | 
						
							| 219 | 184 218 | eqtr3d |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( M ` <" I J "> ) .x. ( M ` <" K L "> ) ) = ( ( ( M ` <" I J "> ) .x. ( M ` <" J K "> ) ) .x. ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) ) ) | 
						
							| 220 | 11 12 | oveq12d |  |-  ( ph -> ( E .x. F ) = ( ( M ` <" I J "> ) .x. ( M ` <" K L "> ) ) ) | 
						
							| 221 | 220 | ad2antrr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( E .x. F ) = ( ( M ` <" I J "> ) .x. ( M ` <" K L "> ) ) ) | 
						
							| 222 | 5 3 148 149 150 151 153 159 160 6 | cyc3co2 |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" J K I "> ) = ( ( M ` <" J I "> ) .x. ( M ` <" J K "> ) ) ) | 
						
							| 223 | 136 | oveq1d |  |-  ( ph -> ( ( M ` <" I J "> ) .x. ( M ` <" J K "> ) ) = ( ( M ` <" J I "> ) .x. ( M ` <" J K "> ) ) ) | 
						
							| 224 | 223 | ad2antrr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( M ` <" I J "> ) .x. ( M ` <" J K "> ) ) = ( ( M ` <" J I "> ) .x. ( M ` <" J K "> ) ) ) | 
						
							| 225 | 222 224 | eqtr4d |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" J K I "> ) = ( ( M ` <" I J "> ) .x. ( M ` <" J K "> ) ) ) | 
						
							| 226 | 5 3 148 150 163 149 164 168 153 6 | cyc3co2 |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" K L J "> ) = ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) ) | 
						
							| 227 | 225 226 | oveq12d |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( M ` <" J K I "> ) .x. ( M ` <" K L J "> ) ) = ( ( ( M ` <" I J "> ) .x. ( M ` <" J K "> ) ) .x. ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) ) ) | 
						
							| 228 | 219 221 227 | 3eqtr4d |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( E .x. F ) = ( ( M ` <" J K I "> ) .x. ( M ` <" K L J "> ) ) ) | 
						
							| 229 | 178 | grpmndd |  |-  ( ph -> S e. Mnd ) | 
						
							| 230 | 229 | ad2antrr |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> S e. Mnd ) | 
						
							| 231 | 5 3 148 149 150 151 153 159 160 | cycpm3cl |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" J K I "> ) e. ( Base ` S ) ) | 
						
							| 232 | 226 204 | eqeltrd |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" K L J "> ) e. ( Base ` S ) ) | 
						
							| 233 | 25 6 | gsumws2 |  |-  ( ( S e. Mnd /\ ( M ` <" J K I "> ) e. ( Base ` S ) /\ ( M ` <" K L J "> ) e. ( Base ` S ) ) -> ( S gsum <" ( M ` <" J K I "> ) ( M ` <" K L J "> ) "> ) = ( ( M ` <" J K I "> ) .x. ( M ` <" K L J "> ) ) ) | 
						
							| 234 | 230 231 232 233 | syl3anc |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( S gsum <" ( M ` <" J K I "> ) ( M ` <" K L J "> ) "> ) = ( ( M ` <" J K I "> ) .x. ( M ` <" K L J "> ) ) ) | 
						
							| 235 | 228 234 | eqtr4d |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( E .x. F ) = ( S gsum <" ( M ` <" J K I "> ) ( M ` <" K L J "> ) "> ) ) | 
						
							| 236 | 171 174 235 | rspcedvd |  |-  ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> E. c e. Word C ( E .x. F ) = ( S gsum c ) ) | 
						
							| 237 | 147 236 | pm2.61dan |  |-  ( ( ph /\ -. I e. { K , L } ) -> E. c e. Word C ( E .x. F ) = ( S gsum c ) ) | 
						
							| 238 | 106 237 | pm2.61dan |  |-  ( ph -> E. c e. Word C ( E .x. F ) = ( S gsum c ) ) |