Step |
Hyp |
Ref |
Expression |
1 |
|
cyc3genpm.t |
|- C = ( M " ( `' # " { 3 } ) ) |
2 |
|
cyc3genpm.a |
|- A = ( pmEven ` D ) |
3 |
|
cyc3genpm.s |
|- S = ( SymGrp ` D ) |
4 |
|
cyc3genpm.n |
|- N = ( # ` D ) |
5 |
|
cyc3genpm.m |
|- M = ( toCyc ` D ) |
6 |
|
cyc3genpmlem.t |
|- .x. = ( +g ` S ) |
7 |
|
cyc3genpmlem.i |
|- ( ph -> I e. D ) |
8 |
|
cyc3genpmlem.j |
|- ( ph -> J e. D ) |
9 |
|
cyc3genpmlem.k |
|- ( ph -> K e. D ) |
10 |
|
cyc3genpmlem.l |
|- ( ph -> L e. D ) |
11 |
|
cyc3genpmlem.e |
|- ( ph -> E = ( M ` <" I J "> ) ) |
12 |
|
cyc3genpmlem.f |
|- ( ph -> F = ( M ` <" K L "> ) ) |
13 |
|
cyc3genpmlem.d |
|- ( ph -> D e. V ) |
14 |
|
cyc3genpmlem.1 |
|- ( ph -> I =/= J ) |
15 |
|
cyc3genpmlem.2 |
|- ( ph -> K =/= L ) |
16 |
|
wrd0 |
|- (/) e. Word C |
17 |
16
|
a1i |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> (/) e. Word C ) |
18 |
|
simpr |
|- ( ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) /\ c = (/) ) -> c = (/) ) |
19 |
18
|
oveq2d |
|- ( ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) /\ c = (/) ) -> ( S gsum c ) = ( S gsum (/) ) ) |
20 |
19
|
eqeq2d |
|- ( ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) /\ c = (/) ) -> ( ( E .x. F ) = ( S gsum c ) <-> ( E .x. F ) = ( S gsum (/) ) ) ) |
21 |
5 13 7 8 14 3
|
cycpm2cl |
|- ( ph -> ( M ` <" I J "> ) e. ( Base ` S ) ) |
22 |
11 21
|
eqeltrd |
|- ( ph -> E e. ( Base ` S ) ) |
23 |
5 13 9 10 15 3
|
cycpm2cl |
|- ( ph -> ( M ` <" K L "> ) e. ( Base ` S ) ) |
24 |
12 23
|
eqeltrd |
|- ( ph -> F e. ( Base ` S ) ) |
25 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
26 |
3 25 6
|
symgov |
|- ( ( E e. ( Base ` S ) /\ F e. ( Base ` S ) ) -> ( E .x. F ) = ( E o. F ) ) |
27 |
22 24 26
|
syl2anc |
|- ( ph -> ( E .x. F ) = ( E o. F ) ) |
28 |
27
|
ad2antrr |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> ( E .x. F ) = ( E o. F ) ) |
29 |
11
|
ad2antrr |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> E = ( M ` <" I J "> ) ) |
30 |
|
eqid |
|- ( pmTrsp ` D ) = ( pmTrsp ` D ) |
31 |
5 13 7 8 14 30
|
cycpm2tr |
|- ( ph -> ( M ` <" I J "> ) = ( ( pmTrsp ` D ) ` { I , J } ) ) |
32 |
31
|
ad2antrr |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> ( M ` <" I J "> ) = ( ( pmTrsp ` D ) ` { I , J } ) ) |
33 |
29 32
|
eqtrd |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> E = ( ( pmTrsp ` D ) ` { I , J } ) ) |
34 |
5 13 9 10 15 30
|
cycpm2tr |
|- ( ph -> ( M ` <" K L "> ) = ( ( pmTrsp ` D ) ` { K , L } ) ) |
35 |
34
|
ad2antrr |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> ( M ` <" K L "> ) = ( ( pmTrsp ` D ) ` { K , L } ) ) |
36 |
12
|
ad2antrr |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> F = ( M ` <" K L "> ) ) |
37 |
7
|
ad2antrr |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> I e. D ) |
38 |
8
|
ad2antrr |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> J e. D ) |
39 |
14
|
ad2antrr |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> I =/= J ) |
40 |
|
simplr |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> I e. { K , L } ) |
41 |
|
simpr |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> J e. { K , L } ) |
42 |
40 41
|
prssd |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> { I , J } C_ { K , L } ) |
43 |
|
ssprsseq |
|- ( ( I e. D /\ J e. D /\ I =/= J ) -> ( { I , J } C_ { K , L } <-> { I , J } = { K , L } ) ) |
44 |
43
|
biimpa |
|- ( ( ( I e. D /\ J e. D /\ I =/= J ) /\ { I , J } C_ { K , L } ) -> { I , J } = { K , L } ) |
45 |
37 38 39 42 44
|
syl31anc |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> { I , J } = { K , L } ) |
46 |
45
|
fveq2d |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> ( ( pmTrsp ` D ) ` { I , J } ) = ( ( pmTrsp ` D ) ` { K , L } ) ) |
47 |
35 36 46
|
3eqtr4d |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> F = ( ( pmTrsp ` D ) ` { I , J } ) ) |
48 |
33 47
|
coeq12d |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> ( E o. F ) = ( ( ( pmTrsp ` D ) ` { I , J } ) o. ( ( pmTrsp ` D ) ` { I , J } ) ) ) |
49 |
13
|
ad2antrr |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> D e. V ) |
50 |
37 38
|
prssd |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> { I , J } C_ D ) |
51 |
|
pr2nelem |
|- ( ( I e. D /\ J e. D /\ I =/= J ) -> { I , J } ~~ 2o ) |
52 |
37 38 39 51
|
syl3anc |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> { I , J } ~~ 2o ) |
53 |
|
eqid |
|- ran ( pmTrsp ` D ) = ran ( pmTrsp ` D ) |
54 |
30 53
|
pmtrrn |
|- ( ( D e. V /\ { I , J } C_ D /\ { I , J } ~~ 2o ) -> ( ( pmTrsp ` D ) ` { I , J } ) e. ran ( pmTrsp ` D ) ) |
55 |
49 50 52 54
|
syl3anc |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> ( ( pmTrsp ` D ) ` { I , J } ) e. ran ( pmTrsp ` D ) ) |
56 |
30 53
|
pmtrfinv |
|- ( ( ( pmTrsp ` D ) ` { I , J } ) e. ran ( pmTrsp ` D ) -> ( ( ( pmTrsp ` D ) ` { I , J } ) o. ( ( pmTrsp ` D ) ` { I , J } ) ) = ( _I |` D ) ) |
57 |
55 56
|
syl |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> ( ( ( pmTrsp ` D ) ` { I , J } ) o. ( ( pmTrsp ` D ) ` { I , J } ) ) = ( _I |` D ) ) |
58 |
28 48 57
|
3eqtrd |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> ( E .x. F ) = ( _I |` D ) ) |
59 |
3
|
symgid |
|- ( D e. V -> ( _I |` D ) = ( 0g ` S ) ) |
60 |
49 59
|
syl |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> ( _I |` D ) = ( 0g ` S ) ) |
61 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
62 |
61
|
gsum0 |
|- ( S gsum (/) ) = ( 0g ` S ) |
63 |
60 62
|
eqtr4di |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> ( _I |` D ) = ( S gsum (/) ) ) |
64 |
58 63
|
eqtrd |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> ( E .x. F ) = ( S gsum (/) ) ) |
65 |
17 20 64
|
rspcedvd |
|- ( ( ( ph /\ I e. { K , L } ) /\ J e. { K , L } ) -> E. c e. Word C ( E .x. F ) = ( S gsum c ) ) |
66 |
13
|
ad2antrr |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> D e. V ) |
67 |
7
|
ad2antrr |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> I e. D ) |
68 |
9 10
|
prssd |
|- ( ph -> { K , L } C_ D ) |
69 |
68
|
ad2antrr |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> { K , L } C_ D ) |
70 |
|
simplr |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> I e. { K , L } ) |
71 |
|
pr2nelem |
|- ( ( K e. D /\ L e. D /\ K =/= L ) -> { K , L } ~~ 2o ) |
72 |
9 10 15 71
|
syl3anc |
|- ( ph -> { K , L } ~~ 2o ) |
73 |
72
|
ad2antrr |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> { K , L } ~~ 2o ) |
74 |
|
unidifsnel |
|- ( ( I e. { K , L } /\ { K , L } ~~ 2o ) -> U. ( { K , L } \ { I } ) e. { K , L } ) |
75 |
70 73 74
|
syl2anc |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> U. ( { K , L } \ { I } ) e. { K , L } ) |
76 |
69 75
|
sseldd |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> U. ( { K , L } \ { I } ) e. D ) |
77 |
8
|
ad2antrr |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> J e. D ) |
78 |
|
unidifsnne |
|- ( ( I e. { K , L } /\ { K , L } ~~ 2o ) -> U. ( { K , L } \ { I } ) =/= I ) |
79 |
70 73 78
|
syl2anc |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> U. ( { K , L } \ { I } ) =/= I ) |
80 |
79
|
necomd |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> I =/= U. ( { K , L } \ { I } ) ) |
81 |
|
nelne2 |
|- ( ( U. ( { K , L } \ { I } ) e. { K , L } /\ -. J e. { K , L } ) -> U. ( { K , L } \ { I } ) =/= J ) |
82 |
75 81
|
sylancom |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> U. ( { K , L } \ { I } ) =/= J ) |
83 |
14
|
necomd |
|- ( ph -> J =/= I ) |
84 |
83
|
ad2antrr |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> J =/= I ) |
85 |
5 3 66 67 76 77 80 82 84
|
cycpm3cl2 |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" I U. ( { K , L } \ { I } ) J "> ) e. ( M " ( `' # " { 3 } ) ) ) |
86 |
85 1
|
eleqtrrdi |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" I U. ( { K , L } \ { I } ) J "> ) e. C ) |
87 |
86
|
s1cld |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> <" ( M ` <" I U. ( { K , L } \ { I } ) J "> ) "> e. Word C ) |
88 |
|
simpr |
|- ( ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) /\ c = <" ( M ` <" I U. ( { K , L } \ { I } ) J "> ) "> ) -> c = <" ( M ` <" I U. ( { K , L } \ { I } ) J "> ) "> ) |
89 |
88
|
oveq2d |
|- ( ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) /\ c = <" ( M ` <" I U. ( { K , L } \ { I } ) J "> ) "> ) -> ( S gsum c ) = ( S gsum <" ( M ` <" I U. ( { K , L } \ { I } ) J "> ) "> ) ) |
90 |
89
|
eqeq2d |
|- ( ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) /\ c = <" ( M ` <" I U. ( { K , L } \ { I } ) J "> ) "> ) -> ( ( E .x. F ) = ( S gsum c ) <-> ( E .x. F ) = ( S gsum <" ( M ` <" I U. ( { K , L } \ { I } ) J "> ) "> ) ) ) |
91 |
5 3 66 67 76 77 80 82 84 6
|
cyc3co2 |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" I U. ( { K , L } \ { I } ) J "> ) = ( ( M ` <" I J "> ) .x. ( M ` <" I U. ( { K , L } \ { I } ) "> ) ) ) |
92 |
5 3 66 67 76 77 80 82 84
|
cycpm3cl |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" I U. ( { K , L } \ { I } ) J "> ) e. ( Base ` S ) ) |
93 |
25
|
gsumws1 |
|- ( ( M ` <" I U. ( { K , L } \ { I } ) J "> ) e. ( Base ` S ) -> ( S gsum <" ( M ` <" I U. ( { K , L } \ { I } ) J "> ) "> ) = ( M ` <" I U. ( { K , L } \ { I } ) J "> ) ) |
94 |
92 93
|
syl |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> ( S gsum <" ( M ` <" I U. ( { K , L } \ { I } ) J "> ) "> ) = ( M ` <" I U. ( { K , L } \ { I } ) J "> ) ) |
95 |
11
|
ad2antrr |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> E = ( M ` <" I J "> ) ) |
96 |
|
en2eleq |
|- ( ( I e. { K , L } /\ { K , L } ~~ 2o ) -> { K , L } = { I , U. ( { K , L } \ { I } ) } ) |
97 |
70 73 96
|
syl2anc |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> { K , L } = { I , U. ( { K , L } \ { I } ) } ) |
98 |
97
|
fveq2d |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( pmTrsp ` D ) ` { K , L } ) = ( ( pmTrsp ` D ) ` { I , U. ( { K , L } \ { I } ) } ) ) |
99 |
12 34
|
eqtrd |
|- ( ph -> F = ( ( pmTrsp ` D ) ` { K , L } ) ) |
100 |
99
|
ad2antrr |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> F = ( ( pmTrsp ` D ) ` { K , L } ) ) |
101 |
5 66 67 76 80 30
|
cycpm2tr |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" I U. ( { K , L } \ { I } ) "> ) = ( ( pmTrsp ` D ) ` { I , U. ( { K , L } \ { I } ) } ) ) |
102 |
98 100 101
|
3eqtr4d |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> F = ( M ` <" I U. ( { K , L } \ { I } ) "> ) ) |
103 |
95 102
|
oveq12d |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> ( E .x. F ) = ( ( M ` <" I J "> ) .x. ( M ` <" I U. ( { K , L } \ { I } ) "> ) ) ) |
104 |
91 94 103
|
3eqtr4rd |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> ( E .x. F ) = ( S gsum <" ( M ` <" I U. ( { K , L } \ { I } ) J "> ) "> ) ) |
105 |
87 90 104
|
rspcedvd |
|- ( ( ( ph /\ I e. { K , L } ) /\ -. J e. { K , L } ) -> E. c e. Word C ( E .x. F ) = ( S gsum c ) ) |
106 |
65 105
|
pm2.61dan |
|- ( ( ph /\ I e. { K , L } ) -> E. c e. Word C ( E .x. F ) = ( S gsum c ) ) |
107 |
13
|
ad2antrr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> D e. V ) |
108 |
8
|
ad2antrr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> J e. D ) |
109 |
68
|
ad2antrr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> { K , L } C_ D ) |
110 |
|
simpr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> J e. { K , L } ) |
111 |
72
|
ad2antrr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> { K , L } ~~ 2o ) |
112 |
|
unidifsnel |
|- ( ( J e. { K , L } /\ { K , L } ~~ 2o ) -> U. ( { K , L } \ { J } ) e. { K , L } ) |
113 |
110 111 112
|
syl2anc |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> U. ( { K , L } \ { J } ) e. { K , L } ) |
114 |
109 113
|
sseldd |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> U. ( { K , L } \ { J } ) e. D ) |
115 |
7
|
ad2antrr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> I e. D ) |
116 |
|
unidifsnne |
|- ( ( J e. { K , L } /\ { K , L } ~~ 2o ) -> U. ( { K , L } \ { J } ) =/= J ) |
117 |
110 111 116
|
syl2anc |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> U. ( { K , L } \ { J } ) =/= J ) |
118 |
117
|
necomd |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> J =/= U. ( { K , L } \ { J } ) ) |
119 |
|
simplr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> -. I e. { K , L } ) |
120 |
|
nelne2 |
|- ( ( U. ( { K , L } \ { J } ) e. { K , L } /\ -. I e. { K , L } ) -> U. ( { K , L } \ { J } ) =/= I ) |
121 |
113 119 120
|
syl2anc |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> U. ( { K , L } \ { J } ) =/= I ) |
122 |
14
|
ad2antrr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> I =/= J ) |
123 |
5 3 107 108 114 115 118 121 122
|
cycpm3cl2 |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> ( M ` <" J U. ( { K , L } \ { J } ) I "> ) e. ( M " ( `' # " { 3 } ) ) ) |
124 |
123 1
|
eleqtrrdi |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> ( M ` <" J U. ( { K , L } \ { J } ) I "> ) e. C ) |
125 |
124
|
s1cld |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> <" ( M ` <" J U. ( { K , L } \ { J } ) I "> ) "> e. Word C ) |
126 |
|
simpr |
|- ( ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) /\ c = <" ( M ` <" J U. ( { K , L } \ { J } ) I "> ) "> ) -> c = <" ( M ` <" J U. ( { K , L } \ { J } ) I "> ) "> ) |
127 |
126
|
oveq2d |
|- ( ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) /\ c = <" ( M ` <" J U. ( { K , L } \ { J } ) I "> ) "> ) -> ( S gsum c ) = ( S gsum <" ( M ` <" J U. ( { K , L } \ { J } ) I "> ) "> ) ) |
128 |
127
|
eqeq2d |
|- ( ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) /\ c = <" ( M ` <" J U. ( { K , L } \ { J } ) I "> ) "> ) -> ( ( E .x. F ) = ( S gsum c ) <-> ( E .x. F ) = ( S gsum <" ( M ` <" J U. ( { K , L } \ { J } ) I "> ) "> ) ) ) |
129 |
5 3 107 108 114 115 118 121 122 6
|
cyc3co2 |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> ( M ` <" J U. ( { K , L } \ { J } ) I "> ) = ( ( M ` <" J I "> ) .x. ( M ` <" J U. ( { K , L } \ { J } ) "> ) ) ) |
130 |
5 3 107 108 114 115 118 121 122
|
cycpm3cl |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> ( M ` <" J U. ( { K , L } \ { J } ) I "> ) e. ( Base ` S ) ) |
131 |
25
|
gsumws1 |
|- ( ( M ` <" J U. ( { K , L } \ { J } ) I "> ) e. ( Base ` S ) -> ( S gsum <" ( M ` <" J U. ( { K , L } \ { J } ) I "> ) "> ) = ( M ` <" J U. ( { K , L } \ { J } ) I "> ) ) |
132 |
130 131
|
syl |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> ( S gsum <" ( M ` <" J U. ( { K , L } \ { J } ) I "> ) "> ) = ( M ` <" J U. ( { K , L } \ { J } ) I "> ) ) |
133 |
|
prcom |
|- { I , J } = { J , I } |
134 |
133
|
fveq2i |
|- ( ( pmTrsp ` D ) ` { I , J } ) = ( ( pmTrsp ` D ) ` { J , I } ) |
135 |
5 13 8 7 83 30
|
cycpm2tr |
|- ( ph -> ( M ` <" J I "> ) = ( ( pmTrsp ` D ) ` { J , I } ) ) |
136 |
134 31 135
|
3eqtr4a |
|- ( ph -> ( M ` <" I J "> ) = ( M ` <" J I "> ) ) |
137 |
11 136
|
eqtrd |
|- ( ph -> E = ( M ` <" J I "> ) ) |
138 |
137
|
ad2antrr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> E = ( M ` <" J I "> ) ) |
139 |
|
en2eleq |
|- ( ( J e. { K , L } /\ { K , L } ~~ 2o ) -> { K , L } = { J , U. ( { K , L } \ { J } ) } ) |
140 |
110 111 139
|
syl2anc |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> { K , L } = { J , U. ( { K , L } \ { J } ) } ) |
141 |
140
|
fveq2d |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> ( ( pmTrsp ` D ) ` { K , L } ) = ( ( pmTrsp ` D ) ` { J , U. ( { K , L } \ { J } ) } ) ) |
142 |
99
|
ad2antrr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> F = ( ( pmTrsp ` D ) ` { K , L } ) ) |
143 |
5 107 108 114 118 30
|
cycpm2tr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> ( M ` <" J U. ( { K , L } \ { J } ) "> ) = ( ( pmTrsp ` D ) ` { J , U. ( { K , L } \ { J } ) } ) ) |
144 |
141 142 143
|
3eqtr4d |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> F = ( M ` <" J U. ( { K , L } \ { J } ) "> ) ) |
145 |
138 144
|
oveq12d |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> ( E .x. F ) = ( ( M ` <" J I "> ) .x. ( M ` <" J U. ( { K , L } \ { J } ) "> ) ) ) |
146 |
129 132 145
|
3eqtr4rd |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> ( E .x. F ) = ( S gsum <" ( M ` <" J U. ( { K , L } \ { J } ) I "> ) "> ) ) |
147 |
125 128 146
|
rspcedvd |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ J e. { K , L } ) -> E. c e. Word C ( E .x. F ) = ( S gsum c ) ) |
148 |
13
|
ad2antrr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> D e. V ) |
149 |
8
|
ad2antrr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> J e. D ) |
150 |
9
|
ad2antrr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> K e. D ) |
151 |
7
|
ad2antrr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> I e. D ) |
152 |
|
simpr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> -. J e. { K , L } ) |
153 |
149 152
|
nelpr1 |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> J =/= K ) |
154 |
|
prid1g |
|- ( K e. D -> K e. { K , L } ) |
155 |
9 154
|
syl |
|- ( ph -> K e. { K , L } ) |
156 |
155
|
ad2antrr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> K e. { K , L } ) |
157 |
|
simplr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> -. I e. { K , L } ) |
158 |
|
nelne2 |
|- ( ( K e. { K , L } /\ -. I e. { K , L } ) -> K =/= I ) |
159 |
156 157 158
|
syl2anc |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> K =/= I ) |
160 |
14
|
ad2antrr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> I =/= J ) |
161 |
5 3 148 149 150 151 153 159 160
|
cycpm3cl2 |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" J K I "> ) e. ( M " ( `' # " { 3 } ) ) ) |
162 |
161 1
|
eleqtrrdi |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" J K I "> ) e. C ) |
163 |
10
|
ad2antrr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> L e. D ) |
164 |
15
|
ad2antrr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> K =/= L ) |
165 |
|
prid2g |
|- ( L e. D -> L e. { K , L } ) |
166 |
163 165
|
syl |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> L e. { K , L } ) |
167 |
|
nelne2 |
|- ( ( L e. { K , L } /\ -. J e. { K , L } ) -> L =/= J ) |
168 |
166 167
|
sylancom |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> L =/= J ) |
169 |
5 3 148 150 163 149 164 168 153
|
cycpm3cl2 |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" K L J "> ) e. ( M " ( `' # " { 3 } ) ) ) |
170 |
169 1
|
eleqtrrdi |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" K L J "> ) e. C ) |
171 |
162 170
|
s2cld |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> <" ( M ` <" J K I "> ) ( M ` <" K L J "> ) "> e. Word C ) |
172 |
|
simpr |
|- ( ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) /\ c = <" ( M ` <" J K I "> ) ( M ` <" K L J "> ) "> ) -> c = <" ( M ` <" J K I "> ) ( M ` <" K L J "> ) "> ) |
173 |
172
|
oveq2d |
|- ( ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) /\ c = <" ( M ` <" J K I "> ) ( M ` <" K L J "> ) "> ) -> ( S gsum c ) = ( S gsum <" ( M ` <" J K I "> ) ( M ` <" K L J "> ) "> ) ) |
174 |
173
|
eqeq2d |
|- ( ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) /\ c = <" ( M ` <" J K I "> ) ( M ` <" K L J "> ) "> ) -> ( ( E .x. F ) = ( S gsum c ) <-> ( E .x. F ) = ( S gsum <" ( M ` <" J K I "> ) ( M ` <" K L J "> ) "> ) ) ) |
175 |
148 59
|
syl |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( _I |` D ) = ( 0g ` S ) ) |
176 |
175
|
oveq1d |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( _I |` D ) .x. ( M ` <" K L "> ) ) = ( ( 0g ` S ) .x. ( M ` <" K L "> ) ) ) |
177 |
3
|
symggrp |
|- ( D e. V -> S e. Grp ) |
178 |
13 177
|
syl |
|- ( ph -> S e. Grp ) |
179 |
178
|
ad2antrr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> S e. Grp ) |
180 |
23
|
ad2antrr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" K L "> ) e. ( Base ` S ) ) |
181 |
25 6 61
|
grplid |
|- ( ( S e. Grp /\ ( M ` <" K L "> ) e. ( Base ` S ) ) -> ( ( 0g ` S ) .x. ( M ` <" K L "> ) ) = ( M ` <" K L "> ) ) |
182 |
179 180 181
|
syl2anc |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( 0g ` S ) .x. ( M ` <" K L "> ) ) = ( M ` <" K L "> ) ) |
183 |
176 182
|
eqtrd |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( _I |` D ) .x. ( M ` <" K L "> ) ) = ( M ` <" K L "> ) ) |
184 |
183
|
oveq2d |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( M ` <" I J "> ) .x. ( ( _I |` D ) .x. ( M ` <" K L "> ) ) ) = ( ( M ` <" I J "> ) .x. ( M ` <" K L "> ) ) ) |
185 |
21
|
ad2antrr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" I J "> ) e. ( Base ` S ) ) |
186 |
5 148 149 150 153 30
|
cycpm2tr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" J K "> ) = ( ( pmTrsp ` D ) ` { J , K } ) ) |
187 |
53 3 25
|
symgtrf |
|- ran ( pmTrsp ` D ) C_ ( Base ` S ) |
188 |
8 9
|
prssd |
|- ( ph -> { J , K } C_ D ) |
189 |
188
|
ad2antrr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> { J , K } C_ D ) |
190 |
|
pr2nelem |
|- ( ( J e. D /\ K e. D /\ J =/= K ) -> { J , K } ~~ 2o ) |
191 |
149 150 153 190
|
syl3anc |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> { J , K } ~~ 2o ) |
192 |
30 53
|
pmtrrn |
|- ( ( D e. V /\ { J , K } C_ D /\ { J , K } ~~ 2o ) -> ( ( pmTrsp ` D ) ` { J , K } ) e. ran ( pmTrsp ` D ) ) |
193 |
148 189 191 192
|
syl3anc |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( pmTrsp ` D ) ` { J , K } ) e. ran ( pmTrsp ` D ) ) |
194 |
187 193
|
sselid |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( pmTrsp ` D ) ` { J , K } ) e. ( Base ` S ) ) |
195 |
186 194
|
eqeltrd |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" J K "> ) e. ( Base ` S ) ) |
196 |
153
|
necomd |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> K =/= J ) |
197 |
5 148 150 149 196 30
|
cycpm2tr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" K J "> ) = ( ( pmTrsp ` D ) ` { K , J } ) ) |
198 |
|
prcom |
|- { J , K } = { K , J } |
199 |
198
|
a1i |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> { J , K } = { K , J } ) |
200 |
199
|
fveq2d |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( pmTrsp ` D ) ` { J , K } ) = ( ( pmTrsp ` D ) ` { K , J } ) ) |
201 |
197 200
|
eqtr4d |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" K J "> ) = ( ( pmTrsp ` D ) ` { J , K } ) ) |
202 |
201 194
|
eqeltrd |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" K J "> ) e. ( Base ` S ) ) |
203 |
25 6
|
grpcl |
|- ( ( S e. Grp /\ ( M ` <" K J "> ) e. ( Base ` S ) /\ ( M ` <" K L "> ) e. ( Base ` S ) ) -> ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) e. ( Base ` S ) ) |
204 |
179 202 180 203
|
syl3anc |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) e. ( Base ` S ) ) |
205 |
25 6
|
grpass |
|- ( ( S e. Grp /\ ( ( M ` <" I J "> ) e. ( Base ` S ) /\ ( M ` <" J K "> ) e. ( Base ` S ) /\ ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) e. ( Base ` S ) ) ) -> ( ( ( M ` <" I J "> ) .x. ( M ` <" J K "> ) ) .x. ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) ) = ( ( M ` <" I J "> ) .x. ( ( M ` <" J K "> ) .x. ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) ) ) ) |
206 |
179 185 195 204 205
|
syl13anc |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( ( M ` <" I J "> ) .x. ( M ` <" J K "> ) ) .x. ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) ) = ( ( M ` <" I J "> ) .x. ( ( M ` <" J K "> ) .x. ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) ) ) ) |
207 |
25 6
|
grpass |
|- ( ( S e. Grp /\ ( ( M ` <" J K "> ) e. ( Base ` S ) /\ ( M ` <" K J "> ) e. ( Base ` S ) /\ ( M ` <" K L "> ) e. ( Base ` S ) ) ) -> ( ( ( M ` <" J K "> ) .x. ( M ` <" K J "> ) ) .x. ( M ` <" K L "> ) ) = ( ( M ` <" J K "> ) .x. ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) ) ) |
208 |
179 195 202 180 207
|
syl13anc |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( ( M ` <" J K "> ) .x. ( M ` <" K J "> ) ) .x. ( M ` <" K L "> ) ) = ( ( M ` <" J K "> ) .x. ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) ) ) |
209 |
208
|
oveq2d |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( M ` <" I J "> ) .x. ( ( ( M ` <" J K "> ) .x. ( M ` <" K J "> ) ) .x. ( M ` <" K L "> ) ) ) = ( ( M ` <" I J "> ) .x. ( ( M ` <" J K "> ) .x. ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) ) ) ) |
210 |
186 201
|
oveq12d |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( M ` <" J K "> ) .x. ( M ` <" K J "> ) ) = ( ( ( pmTrsp ` D ) ` { J , K } ) .x. ( ( pmTrsp ` D ) ` { J , K } ) ) ) |
211 |
3 25 6
|
symgov |
|- ( ( ( ( pmTrsp ` D ) ` { J , K } ) e. ( Base ` S ) /\ ( ( pmTrsp ` D ) ` { J , K } ) e. ( Base ` S ) ) -> ( ( ( pmTrsp ` D ) ` { J , K } ) .x. ( ( pmTrsp ` D ) ` { J , K } ) ) = ( ( ( pmTrsp ` D ) ` { J , K } ) o. ( ( pmTrsp ` D ) ` { J , K } ) ) ) |
212 |
194 194 211
|
syl2anc |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( ( pmTrsp ` D ) ` { J , K } ) .x. ( ( pmTrsp ` D ) ` { J , K } ) ) = ( ( ( pmTrsp ` D ) ` { J , K } ) o. ( ( pmTrsp ` D ) ` { J , K } ) ) ) |
213 |
30 53
|
pmtrfinv |
|- ( ( ( pmTrsp ` D ) ` { J , K } ) e. ran ( pmTrsp ` D ) -> ( ( ( pmTrsp ` D ) ` { J , K } ) o. ( ( pmTrsp ` D ) ` { J , K } ) ) = ( _I |` D ) ) |
214 |
193 213
|
syl |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( ( pmTrsp ` D ) ` { J , K } ) o. ( ( pmTrsp ` D ) ` { J , K } ) ) = ( _I |` D ) ) |
215 |
210 212 214
|
3eqtrd |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( M ` <" J K "> ) .x. ( M ` <" K J "> ) ) = ( _I |` D ) ) |
216 |
215
|
oveq1d |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( ( M ` <" J K "> ) .x. ( M ` <" K J "> ) ) .x. ( M ` <" K L "> ) ) = ( ( _I |` D ) .x. ( M ` <" K L "> ) ) ) |
217 |
216
|
oveq2d |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( M ` <" I J "> ) .x. ( ( ( M ` <" J K "> ) .x. ( M ` <" K J "> ) ) .x. ( M ` <" K L "> ) ) ) = ( ( M ` <" I J "> ) .x. ( ( _I |` D ) .x. ( M ` <" K L "> ) ) ) ) |
218 |
206 209 217
|
3eqtr2rd |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( M ` <" I J "> ) .x. ( ( _I |` D ) .x. ( M ` <" K L "> ) ) ) = ( ( ( M ` <" I J "> ) .x. ( M ` <" J K "> ) ) .x. ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) ) ) |
219 |
184 218
|
eqtr3d |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( M ` <" I J "> ) .x. ( M ` <" K L "> ) ) = ( ( ( M ` <" I J "> ) .x. ( M ` <" J K "> ) ) .x. ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) ) ) |
220 |
11 12
|
oveq12d |
|- ( ph -> ( E .x. F ) = ( ( M ` <" I J "> ) .x. ( M ` <" K L "> ) ) ) |
221 |
220
|
ad2antrr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( E .x. F ) = ( ( M ` <" I J "> ) .x. ( M ` <" K L "> ) ) ) |
222 |
5 3 148 149 150 151 153 159 160 6
|
cyc3co2 |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" J K I "> ) = ( ( M ` <" J I "> ) .x. ( M ` <" J K "> ) ) ) |
223 |
136
|
oveq1d |
|- ( ph -> ( ( M ` <" I J "> ) .x. ( M ` <" J K "> ) ) = ( ( M ` <" J I "> ) .x. ( M ` <" J K "> ) ) ) |
224 |
223
|
ad2antrr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( M ` <" I J "> ) .x. ( M ` <" J K "> ) ) = ( ( M ` <" J I "> ) .x. ( M ` <" J K "> ) ) ) |
225 |
222 224
|
eqtr4d |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" J K I "> ) = ( ( M ` <" I J "> ) .x. ( M ` <" J K "> ) ) ) |
226 |
5 3 148 150 163 149 164 168 153 6
|
cyc3co2 |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" K L J "> ) = ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) ) |
227 |
225 226
|
oveq12d |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( ( M ` <" J K I "> ) .x. ( M ` <" K L J "> ) ) = ( ( ( M ` <" I J "> ) .x. ( M ` <" J K "> ) ) .x. ( ( M ` <" K J "> ) .x. ( M ` <" K L "> ) ) ) ) |
228 |
219 221 227
|
3eqtr4d |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( E .x. F ) = ( ( M ` <" J K I "> ) .x. ( M ` <" K L J "> ) ) ) |
229 |
178
|
grpmndd |
|- ( ph -> S e. Mnd ) |
230 |
229
|
ad2antrr |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> S e. Mnd ) |
231 |
5 3 148 149 150 151 153 159 160
|
cycpm3cl |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" J K I "> ) e. ( Base ` S ) ) |
232 |
226 204
|
eqeltrd |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( M ` <" K L J "> ) e. ( Base ` S ) ) |
233 |
25 6
|
gsumws2 |
|- ( ( S e. Mnd /\ ( M ` <" J K I "> ) e. ( Base ` S ) /\ ( M ` <" K L J "> ) e. ( Base ` S ) ) -> ( S gsum <" ( M ` <" J K I "> ) ( M ` <" K L J "> ) "> ) = ( ( M ` <" J K I "> ) .x. ( M ` <" K L J "> ) ) ) |
234 |
230 231 232 233
|
syl3anc |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( S gsum <" ( M ` <" J K I "> ) ( M ` <" K L J "> ) "> ) = ( ( M ` <" J K I "> ) .x. ( M ` <" K L J "> ) ) ) |
235 |
228 234
|
eqtr4d |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> ( E .x. F ) = ( S gsum <" ( M ` <" J K I "> ) ( M ` <" K L J "> ) "> ) ) |
236 |
171 174 235
|
rspcedvd |
|- ( ( ( ph /\ -. I e. { K , L } ) /\ -. J e. { K , L } ) -> E. c e. Word C ( E .x. F ) = ( S gsum c ) ) |
237 |
147 236
|
pm2.61dan |
|- ( ( ph /\ -. I e. { K , L } ) -> E. c e. Word C ( E .x. F ) = ( S gsum c ) ) |
238 |
106 237
|
pm2.61dan |
|- ( ph -> E. c e. Word C ( E .x. F ) = ( S gsum c ) ) |