Step |
Hyp |
Ref |
Expression |
1 |
|
cyc3evpm.t |
|
2 |
|
cyc3evpm.a |
|
3 |
|
simpr |
|
4 |
|
simpl |
|
5 |
|
eqid |
|
6 |
|
simpr |
|
7 |
6
|
elin1d |
|
8 |
|
elrabi |
|
9 |
7 8
|
syl |
|
10 |
|
id |
|
11 |
|
dmeq |
|
12 |
|
eqidd |
|
13 |
10 11 12
|
f1eq123d |
|
14 |
13
|
elrab |
|
15 |
14
|
simprbi |
|
16 |
7 15
|
syl |
|
17 |
|
eqid |
|
18 |
5 4 9 16 17
|
cycpmcl |
|
19 |
|
c0ex |
|
20 |
19
|
tpid1 |
|
21 |
|
fzo0to3tp |
|
22 |
20 21
|
eleqtrri |
|
23 |
6
|
elin2d |
|
24 |
|
hashf |
|
25 |
|
ffn |
|
26 |
|
elpreima |
|
27 |
24 25 26
|
mp2b |
|
28 |
27
|
simprbi |
|
29 |
|
elsni |
|
30 |
23 28 29
|
3syl |
|
31 |
30
|
oveq2d |
|
32 |
22 31
|
eleqtrrid |
|
33 |
|
wrdsymbcl |
|
34 |
9 32 33
|
syl2anc |
|
35 |
|
1ex |
|
36 |
35
|
tpid2 |
|
37 |
36 21
|
eleqtrri |
|
38 |
37 31
|
eleqtrrid |
|
39 |
|
wrdsymbcl |
|
40 |
9 38 39
|
syl2anc |
|
41 |
|
2ex |
|
42 |
41
|
tpid3 |
|
43 |
42 21
|
eleqtrri |
|
44 |
43 31
|
eleqtrrid |
|
45 |
|
wrdsymbcl |
|
46 |
9 44 45
|
syl2anc |
|
47 |
34 40 46
|
3jca |
|
48 |
|
eqidd |
|
49 |
|
eqidd |
|
50 |
|
eqidd |
|
51 |
48 49 50
|
3jca |
|
52 |
|
eqwrds3 |
|
53 |
52
|
biimpar |
|
54 |
9 47 30 51 53
|
syl22anc |
|
55 |
54
|
fveq2d |
|
56 |
|
wrddm |
|
57 |
9 56
|
syl |
|
58 |
57 31
|
eqtrd |
|
59 |
58 21
|
eqtrdi |
|
60 |
|
f1eq2 |
|
61 |
60
|
biimpa |
|
62 |
59 16 61
|
syl2anc |
|
63 |
19 35 41
|
3pm3.2i |
|
64 |
|
0ne1 |
|
65 |
|
0ne2 |
|
66 |
|
1ne2 |
|
67 |
64 65 66
|
3pm3.2i |
|
68 |
|
eqid |
|
69 |
68
|
f13dfv |
|
70 |
63 67 69
|
mp2an |
|
71 |
70
|
simprbi |
|
72 |
62 71
|
syl |
|
73 |
72
|
simp1d |
|
74 |
72
|
simp3d |
|
75 |
72
|
simp2d |
|
76 |
75
|
necomd |
|
77 |
|
eqid |
|
78 |
5 17 4 34 40 46 73 74 76 77
|
cyc3co2 |
|
79 |
5 4 34 46 75 17
|
cycpm2cl |
|
80 |
5 4 34 40 73 17
|
cycpm2cl |
|
81 |
|
eqid |
|
82 |
17 81 77
|
symgov |
|
83 |
79 80 82
|
syl2anc |
|
84 |
55 78 83
|
3eqtrd |
|
85 |
84
|
fveq2d |
|
86 |
|
eqid |
|
87 |
17 86 81
|
psgnco |
|
88 |
4 79 80 87
|
syl3anc |
|
89 |
|
eqid |
|
90 |
5 4 34 46 75 89
|
cycpm2tr |
|
91 |
34 46
|
prssd |
|
92 |
|
pr2nelem |
|
93 |
34 46 75 92
|
syl3anc |
|
94 |
|
eqid |
|
95 |
89 94
|
pmtrrn |
|
96 |
4 91 93 95
|
syl3anc |
|
97 |
90 96
|
eqeltrd |
|
98 |
17 94 86
|
psgnpmtr |
|
99 |
97 98
|
syl |
|
100 |
5 4 34 40 73 89
|
cycpm2tr |
|
101 |
34 40
|
prssd |
|
102 |
|
pr2nelem |
|
103 |
34 40 73 102
|
syl3anc |
|
104 |
89 94
|
pmtrrn |
|
105 |
4 101 103 104
|
syl3anc |
|
106 |
100 105
|
eqeltrd |
|
107 |
17 94 86
|
psgnpmtr |
|
108 |
106 107
|
syl |
|
109 |
99 108
|
oveq12d |
|
110 |
|
neg1mulneg1e1 |
|
111 |
109 110
|
eqtrdi |
|
112 |
85 88 111
|
3eqtrd |
|
113 |
17 81 86
|
psgnevpmb |
|
114 |
113
|
biimpar |
|
115 |
4 18 112 114
|
syl12anc |
|
116 |
115 2
|
eleqtrrdi |
|
117 |
116
|
ad4ant13 |
|
118 |
3 117
|
eqeltrrd |
|
119 |
|
nfcv |
|
120 |
5 17 81
|
tocycf |
|
121 |
120
|
ffnd |
|
122 |
121
|
adantr |
|
123 |
|
simpr |
|
124 |
123 1
|
eleqtrdi |
|
125 |
119 122 124
|
fvelimad |
|
126 |
118 125
|
r19.29a |
|
127 |
126
|
ex |
|
128 |
127
|
ssrdv |
|