| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evpmid.1 |  |-  S = ( SymGrp ` D ) | 
						
							| 2 |  | elex |  |-  ( D e. Fin -> D e. _V ) | 
						
							| 3 |  | fveq2 |  |-  ( d = D -> ( pmSgn ` d ) = ( pmSgn ` D ) ) | 
						
							| 4 | 3 | cnveqd |  |-  ( d = D -> `' ( pmSgn ` d ) = `' ( pmSgn ` D ) ) | 
						
							| 5 | 4 | imaeq1d |  |-  ( d = D -> ( `' ( pmSgn ` d ) " { 1 } ) = ( `' ( pmSgn ` D ) " { 1 } ) ) | 
						
							| 6 |  | df-evpm |  |-  pmEven = ( d e. _V |-> ( `' ( pmSgn ` d ) " { 1 } ) ) | 
						
							| 7 |  | fvex |  |-  ( pmSgn ` D ) e. _V | 
						
							| 8 | 7 | cnvex |  |-  `' ( pmSgn ` D ) e. _V | 
						
							| 9 | 8 | imaex |  |-  ( `' ( pmSgn ` D ) " { 1 } ) e. _V | 
						
							| 10 | 5 6 9 | fvmpt |  |-  ( D e. _V -> ( pmEven ` D ) = ( `' ( pmSgn ` D ) " { 1 } ) ) | 
						
							| 11 | 2 10 | syl |  |-  ( D e. Fin -> ( pmEven ` D ) = ( `' ( pmSgn ` D ) " { 1 } ) ) | 
						
							| 12 |  | eqid |  |-  ( pmSgn ` D ) = ( pmSgn ` D ) | 
						
							| 13 |  | eqid |  |-  ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) | 
						
							| 14 | 1 12 13 | psgnghm2 |  |-  ( D e. Fin -> ( pmSgn ` D ) e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 15 |  | cnring |  |-  CCfld e. Ring | 
						
							| 16 |  | eqid |  |-  ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) | 
						
							| 17 | 16 | ringmgp |  |-  ( CCfld e. Ring -> ( mulGrp ` CCfld ) e. Mnd ) | 
						
							| 18 | 15 17 | ax-mp |  |-  ( mulGrp ` CCfld ) e. Mnd | 
						
							| 19 |  | ax-1cn |  |-  1 e. CC | 
						
							| 20 |  | prid1g |  |-  ( 1 e. CC -> 1 e. { 1 , -u 1 } ) | 
						
							| 21 | 19 20 | ax-mp |  |-  1 e. { 1 , -u 1 } | 
						
							| 22 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 23 |  | prssi |  |-  ( ( 1 e. CC /\ -u 1 e. CC ) -> { 1 , -u 1 } C_ CC ) | 
						
							| 24 | 19 22 23 | mp2an |  |-  { 1 , -u 1 } C_ CC | 
						
							| 25 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 26 | 16 25 | mgpbas |  |-  CC = ( Base ` ( mulGrp ` CCfld ) ) | 
						
							| 27 |  | cnfld1 |  |-  1 = ( 1r ` CCfld ) | 
						
							| 28 | 16 27 | ringidval |  |-  1 = ( 0g ` ( mulGrp ` CCfld ) ) | 
						
							| 29 | 13 26 28 | ress0g |  |-  ( ( ( mulGrp ` CCfld ) e. Mnd /\ 1 e. { 1 , -u 1 } /\ { 1 , -u 1 } C_ CC ) -> 1 = ( 0g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) | 
						
							| 30 | 18 21 24 29 | mp3an |  |-  1 = ( 0g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) | 
						
							| 31 | 30 | ghmker |  |-  ( ( pmSgn ` D ) e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> ( `' ( pmSgn ` D ) " { 1 } ) e. ( NrmSGrp ` S ) ) | 
						
							| 32 | 14 31 | syl |  |-  ( D e. Fin -> ( `' ( pmSgn ` D ) " { 1 } ) e. ( NrmSGrp ` S ) ) | 
						
							| 33 | 11 32 | eqeltrd |  |-  ( D e. Fin -> ( pmEven ` D ) e. ( NrmSGrp ` S ) ) |