Step |
Hyp |
Ref |
Expression |
1 |
|
evpmid.1 |
|- S = ( SymGrp ` D ) |
2 |
|
elex |
|- ( D e. Fin -> D e. _V ) |
3 |
|
fveq2 |
|- ( d = D -> ( pmSgn ` d ) = ( pmSgn ` D ) ) |
4 |
3
|
cnveqd |
|- ( d = D -> `' ( pmSgn ` d ) = `' ( pmSgn ` D ) ) |
5 |
4
|
imaeq1d |
|- ( d = D -> ( `' ( pmSgn ` d ) " { 1 } ) = ( `' ( pmSgn ` D ) " { 1 } ) ) |
6 |
|
df-evpm |
|- pmEven = ( d e. _V |-> ( `' ( pmSgn ` d ) " { 1 } ) ) |
7 |
|
fvex |
|- ( pmSgn ` D ) e. _V |
8 |
7
|
cnvex |
|- `' ( pmSgn ` D ) e. _V |
9 |
8
|
imaex |
|- ( `' ( pmSgn ` D ) " { 1 } ) e. _V |
10 |
5 6 9
|
fvmpt |
|- ( D e. _V -> ( pmEven ` D ) = ( `' ( pmSgn ` D ) " { 1 } ) ) |
11 |
2 10
|
syl |
|- ( D e. Fin -> ( pmEven ` D ) = ( `' ( pmSgn ` D ) " { 1 } ) ) |
12 |
|
eqid |
|- ( pmSgn ` D ) = ( pmSgn ` D ) |
13 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
14 |
1 12 13
|
psgnghm2 |
|- ( D e. Fin -> ( pmSgn ` D ) e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
15 |
|
cnring |
|- CCfld e. Ring |
16 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
17 |
16
|
ringmgp |
|- ( CCfld e. Ring -> ( mulGrp ` CCfld ) e. Mnd ) |
18 |
15 17
|
ax-mp |
|- ( mulGrp ` CCfld ) e. Mnd |
19 |
|
ax-1cn |
|- 1 e. CC |
20 |
|
prid1g |
|- ( 1 e. CC -> 1 e. { 1 , -u 1 } ) |
21 |
19 20
|
ax-mp |
|- 1 e. { 1 , -u 1 } |
22 |
|
neg1cn |
|- -u 1 e. CC |
23 |
|
prssi |
|- ( ( 1 e. CC /\ -u 1 e. CC ) -> { 1 , -u 1 } C_ CC ) |
24 |
19 22 23
|
mp2an |
|- { 1 , -u 1 } C_ CC |
25 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
26 |
16 25
|
mgpbas |
|- CC = ( Base ` ( mulGrp ` CCfld ) ) |
27 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
28 |
16 27
|
ringidval |
|- 1 = ( 0g ` ( mulGrp ` CCfld ) ) |
29 |
13 26 28
|
ress0g |
|- ( ( ( mulGrp ` CCfld ) e. Mnd /\ 1 e. { 1 , -u 1 } /\ { 1 , -u 1 } C_ CC ) -> 1 = ( 0g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
30 |
18 21 24 29
|
mp3an |
|- 1 = ( 0g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
31 |
30
|
ghmker |
|- ( ( pmSgn ` D ) e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> ( `' ( pmSgn ` D ) " { 1 } ) e. ( NrmSGrp ` S ) ) |
32 |
14 31
|
syl |
|- ( D e. Fin -> ( `' ( pmSgn ` D ) " { 1 } ) e. ( NrmSGrp ` S ) ) |
33 |
11 32
|
eqeltrd |
|- ( D e. Fin -> ( pmEven ` D ) e. ( NrmSGrp ` S ) ) |