Metamath Proof Explorer


Theorem altgnsg

Description: The alternating group ( pmEvenD ) is a normal subgroup of the symmetric group. (Contributed by Thierry Arnoux, 18-Sep-2023)

Ref Expression
Hypothesis evpmid.1 S = SymGrp D
Assertion altgnsg D Fin pmEven D NrmSGrp S

Proof

Step Hyp Ref Expression
1 evpmid.1 S = SymGrp D
2 elex D Fin D V
3 fveq2 d = D pmSgn d = pmSgn D
4 3 cnveqd d = D pmSgn d -1 = pmSgn D -1
5 4 imaeq1d d = D pmSgn d -1 1 = pmSgn D -1 1
6 df-evpm pmEven = d V pmSgn d -1 1
7 fvex pmSgn D V
8 7 cnvex pmSgn D -1 V
9 8 imaex pmSgn D -1 1 V
10 5 6 9 fvmpt D V pmEven D = pmSgn D -1 1
11 2 10 syl D Fin pmEven D = pmSgn D -1 1
12 eqid pmSgn D = pmSgn D
13 eqid mulGrp fld 𝑠 1 1 = mulGrp fld 𝑠 1 1
14 1 12 13 psgnghm2 D Fin pmSgn D S GrpHom mulGrp fld 𝑠 1 1
15 cnring fld Ring
16 eqid mulGrp fld = mulGrp fld
17 16 ringmgp fld Ring mulGrp fld Mnd
18 15 17 ax-mp mulGrp fld Mnd
19 ax-1cn 1
20 prid1g 1 1 1 1
21 19 20 ax-mp 1 1 1
22 neg1cn 1
23 prssi 1 1 1 1
24 19 22 23 mp2an 1 1
25 cnfldbas = Base fld
26 16 25 mgpbas = Base mulGrp fld
27 cnfld1 1 = 1 fld
28 16 27 ringidval 1 = 0 mulGrp fld
29 13 26 28 ress0g mulGrp fld Mnd 1 1 1 1 1 1 = 0 mulGrp fld 𝑠 1 1
30 18 21 24 29 mp3an 1 = 0 mulGrp fld 𝑠 1 1
31 30 ghmker pmSgn D S GrpHom mulGrp fld 𝑠 1 1 pmSgn D -1 1 NrmSGrp S
32 14 31 syl D Fin pmSgn D -1 1 NrmSGrp S
33 11 32 eqeltrd D Fin pmEven D NrmSGrp S