Metamath Proof Explorer


Theorem evpmid

Description: The identity is an even permutation. (Contributed by Thierry Arnoux, 18-Sep-2023)

Ref Expression
Hypothesis evpmid.1 S = SymGrp D
Assertion evpmid D Fin I D pmEven D

Proof

Step Hyp Ref Expression
1 evpmid.1 S = SymGrp D
2 1 idresperm D Fin I D Base S
3 eqid pmSgn D = pmSgn D
4 3 psgnid D Fin pmSgn D I D = 1
5 eqid Base S = Base S
6 1 5 3 psgnevpmb D Fin I D pmEven D I D Base S pmSgn D I D = 1
7 2 4 6 mpbir2and D Fin I D pmEven D