Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Algebra
The Alternating Group
evpmid
Next ⟩
altgnsg
Metamath Proof Explorer
Ascii
Unicode
Theorem
evpmid
Description:
The identity is an even permutation.
(Contributed by
Thierry Arnoux
, 18-Sep-2023)
Ref
Expression
Hypothesis
evpmid.1
⊢
S
=
SymGrp
⁡
D
Assertion
evpmid
⊢
D
∈
Fin
→
I
↾
D
∈
pmEven
⁡
D
Proof
Step
Hyp
Ref
Expression
1
evpmid.1
⊢
S
=
SymGrp
⁡
D
2
1
idresperm
⊢
D
∈
Fin
→
I
↾
D
∈
Base
S
3
eqid
⊢
pmSgn
⁡
D
=
pmSgn
⁡
D
4
3
psgnid
⊢
D
∈
Fin
→
pmSgn
⁡
D
⁡
I
↾
D
=
1
5
eqid
⊢
Base
S
=
Base
S
6
1
5
3
psgnevpmb
⊢
D
∈
Fin
→
I
↾
D
∈
pmEven
⁡
D
↔
I
↾
D
∈
Base
S
∧
pmSgn
⁡
D
⁡
I
↾
D
=
1
7
2
4
6
mpbir2and
⊢
D
∈
Fin
→
I
↾
D
∈
pmEven
⁡
D