Step |
Hyp |
Ref |
Expression |
1 |
|
cnmsgn0g.1 |
⊢ 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) |
2 |
|
cnring |
⊢ ℂfld ∈ Ring |
3 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
4 |
3
|
ringmgp |
⊢ ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
5 |
2 4
|
ax-mp |
⊢ ( mulGrp ‘ ℂfld ) ∈ Mnd |
6 |
|
1ex |
⊢ 1 ∈ V |
7 |
6
|
prid1 |
⊢ 1 ∈ { 1 , - 1 } |
8 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
9 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
10 |
|
prssi |
⊢ ( ( 1 ∈ ℂ ∧ - 1 ∈ ℂ ) → { 1 , - 1 } ⊆ ℂ ) |
11 |
8 9 10
|
mp2an |
⊢ { 1 , - 1 } ⊆ ℂ |
12 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
13 |
3 12
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
14 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
15 |
3 14
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
16 |
1 13 15
|
ress0g |
⊢ ( ( ( mulGrp ‘ ℂfld ) ∈ Mnd ∧ 1 ∈ { 1 , - 1 } ∧ { 1 , - 1 } ⊆ ℂ ) → 1 = ( 0g ‘ 𝑈 ) ) |
17 |
5 7 11 16
|
mp3an |
⊢ 1 = ( 0g ‘ 𝑈 ) |