Metamath Proof Explorer


Theorem cnmsgn0g

Description: The neutral element of the sign subgroup of the complex numbers. (Contributed by Thierry Arnoux, 1-Nov-2023)

Ref Expression
Hypothesis cnmsgn0g.1 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } )
Assertion cnmsgn0g 1 = ( 0g𝑈 )

Proof

Step Hyp Ref Expression
1 cnmsgn0g.1 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } )
2 cnring fld ∈ Ring
3 eqid ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld )
4 3 ringmgp ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd )
5 2 4 ax-mp ( mulGrp ‘ ℂfld ) ∈ Mnd
6 1ex 1 ∈ V
7 6 prid1 1 ∈ { 1 , - 1 }
8 ax-1cn 1 ∈ ℂ
9 neg1cn - 1 ∈ ℂ
10 prssi ( ( 1 ∈ ℂ ∧ - 1 ∈ ℂ ) → { 1 , - 1 } ⊆ ℂ )
11 8 9 10 mp2an { 1 , - 1 } ⊆ ℂ
12 cnfldbas ℂ = ( Base ‘ ℂfld )
13 3 12 mgpbas ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) )
14 cnfld1 1 = ( 1r ‘ ℂfld )
15 3 14 ringidval 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) )
16 1 13 15 ress0g ( ( ( mulGrp ‘ ℂfld ) ∈ Mnd ∧ 1 ∈ { 1 , - 1 } ∧ { 1 , - 1 } ⊆ ℂ ) → 1 = ( 0g𝑈 ) )
17 5 7 11 16 mp3an 1 = ( 0g𝑈 )