| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmsgn0g.1 |
⊢ 𝑈 = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) |
| 2 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 3 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
| 4 |
3
|
ringmgp |
⊢ ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
| 5 |
2 4
|
ax-mp |
⊢ ( mulGrp ‘ ℂfld ) ∈ Mnd |
| 6 |
|
1ex |
⊢ 1 ∈ V |
| 7 |
6
|
prid1 |
⊢ 1 ∈ { 1 , - 1 } |
| 8 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 9 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 10 |
|
prssi |
⊢ ( ( 1 ∈ ℂ ∧ - 1 ∈ ℂ ) → { 1 , - 1 } ⊆ ℂ ) |
| 11 |
8 9 10
|
mp2an |
⊢ { 1 , - 1 } ⊆ ℂ |
| 12 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 13 |
3 12
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
| 14 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
| 15 |
3 14
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
| 16 |
1 13 15
|
ress0g |
⊢ ( ( ( mulGrp ‘ ℂfld ) ∈ Mnd ∧ 1 ∈ { 1 , - 1 } ∧ { 1 , - 1 } ⊆ ℂ ) → 1 = ( 0g ‘ 𝑈 ) ) |
| 17 |
5 7 11 16
|
mp3an |
⊢ 1 = ( 0g ‘ 𝑈 ) |