Step |
Hyp |
Ref |
Expression |
1 |
|
coass |
|- ( ( F o. G ) o. `' G ) = ( F o. ( G o. `' G ) ) |
2 |
|
funcocnv2 |
|- ( Fun G -> ( G o. `' G ) = ( _I |` ran G ) ) |
3 |
2
|
adantl |
|- ( ( Fun F /\ Fun G ) -> ( G o. `' G ) = ( _I |` ran G ) ) |
4 |
3
|
coeq2d |
|- ( ( Fun F /\ Fun G ) -> ( F o. ( G o. `' G ) ) = ( F o. ( _I |` ran G ) ) ) |
5 |
|
resco |
|- ( ( F o. _I ) |` ran G ) = ( F o. ( _I |` ran G ) ) |
6 |
|
funrel |
|- ( Fun F -> Rel F ) |
7 |
|
coi1 |
|- ( Rel F -> ( F o. _I ) = F ) |
8 |
6 7
|
syl |
|- ( Fun F -> ( F o. _I ) = F ) |
9 |
8
|
reseq1d |
|- ( Fun F -> ( ( F o. _I ) |` ran G ) = ( F |` ran G ) ) |
10 |
9
|
adantr |
|- ( ( Fun F /\ Fun G ) -> ( ( F o. _I ) |` ran G ) = ( F |` ran G ) ) |
11 |
5 10
|
eqtr3id |
|- ( ( Fun F /\ Fun G ) -> ( F o. ( _I |` ran G ) ) = ( F |` ran G ) ) |
12 |
4 11
|
eqtrd |
|- ( ( Fun F /\ Fun G ) -> ( F o. ( G o. `' G ) ) = ( F |` ran G ) ) |
13 |
1 12
|
syl5eq |
|- ( ( Fun F /\ Fun G ) -> ( ( F o. G ) o. `' G ) = ( F |` ran G ) ) |