| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coass |  |-  ( ( F o. G ) o. `' G ) = ( F o. ( G o. `' G ) ) | 
						
							| 2 |  | funcocnv2 |  |-  ( Fun G -> ( G o. `' G ) = ( _I |` ran G ) ) | 
						
							| 3 | 2 | adantl |  |-  ( ( Fun F /\ Fun G ) -> ( G o. `' G ) = ( _I |` ran G ) ) | 
						
							| 4 | 3 | coeq2d |  |-  ( ( Fun F /\ Fun G ) -> ( F o. ( G o. `' G ) ) = ( F o. ( _I |` ran G ) ) ) | 
						
							| 5 |  | resco |  |-  ( ( F o. _I ) |` ran G ) = ( F o. ( _I |` ran G ) ) | 
						
							| 6 |  | funrel |  |-  ( Fun F -> Rel F ) | 
						
							| 7 |  | coi1 |  |-  ( Rel F -> ( F o. _I ) = F ) | 
						
							| 8 | 6 7 | syl |  |-  ( Fun F -> ( F o. _I ) = F ) | 
						
							| 9 | 8 | reseq1d |  |-  ( Fun F -> ( ( F o. _I ) |` ran G ) = ( F |` ran G ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( Fun F /\ Fun G ) -> ( ( F o. _I ) |` ran G ) = ( F |` ran G ) ) | 
						
							| 11 | 5 10 | eqtr3id |  |-  ( ( Fun F /\ Fun G ) -> ( F o. ( _I |` ran G ) ) = ( F |` ran G ) ) | 
						
							| 12 | 4 11 | eqtrd |  |-  ( ( Fun F /\ Fun G ) -> ( F o. ( G o. `' G ) ) = ( F |` ran G ) ) | 
						
							| 13 | 1 12 | eqtrid |  |-  ( ( Fun F /\ Fun G ) -> ( ( F o. G ) o. `' G ) = ( F |` ran G ) ) |