Step |
Hyp |
Ref |
Expression |
1 |
|
f1of |
|- ( G : A -1-1-onto-> B -> G : A --> B ) |
2 |
1
|
3ad2ant2 |
|- ( ( Fun F /\ G : A -1-1-onto-> B /\ X e. B ) -> G : A --> B ) |
3 |
|
f1ocnv |
|- ( G : A -1-1-onto-> B -> `' G : B -1-1-onto-> A ) |
4 |
|
f1of |
|- ( `' G : B -1-1-onto-> A -> `' G : B --> A ) |
5 |
3 4
|
syl |
|- ( G : A -1-1-onto-> B -> `' G : B --> A ) |
6 |
5
|
3ad2ant2 |
|- ( ( Fun F /\ G : A -1-1-onto-> B /\ X e. B ) -> `' G : B --> A ) |
7 |
|
simp3 |
|- ( ( Fun F /\ G : A -1-1-onto-> B /\ X e. B ) -> X e. B ) |
8 |
6 7
|
ffvelrnd |
|- ( ( Fun F /\ G : A -1-1-onto-> B /\ X e. B ) -> ( `' G ` X ) e. A ) |
9 |
|
fvco3 |
|- ( ( G : A --> B /\ ( `' G ` X ) e. A ) -> ( ( F o. G ) ` ( `' G ` X ) ) = ( F ` ( G ` ( `' G ` X ) ) ) ) |
10 |
2 8 9
|
syl2anc |
|- ( ( Fun F /\ G : A -1-1-onto-> B /\ X e. B ) -> ( ( F o. G ) ` ( `' G ` X ) ) = ( F ` ( G ` ( `' G ` X ) ) ) ) |
11 |
|
f1ocnvfv2 |
|- ( ( G : A -1-1-onto-> B /\ X e. B ) -> ( G ` ( `' G ` X ) ) = X ) |
12 |
11
|
3adant1 |
|- ( ( Fun F /\ G : A -1-1-onto-> B /\ X e. B ) -> ( G ` ( `' G ` X ) ) = X ) |
13 |
12
|
fveq2d |
|- ( ( Fun F /\ G : A -1-1-onto-> B /\ X e. B ) -> ( F ` ( G ` ( `' G ` X ) ) ) = ( F ` X ) ) |
14 |
10 13
|
eqtrd |
|- ( ( Fun F /\ G : A -1-1-onto-> B /\ X e. B ) -> ( ( F o. G ) ` ( `' G ` X ) ) = ( F ` X ) ) |