| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1of |  |-  ( G : A -1-1-onto-> B -> G : A --> B ) | 
						
							| 2 | 1 | 3ad2ant2 |  |-  ( ( Fun F /\ G : A -1-1-onto-> B /\ X e. B ) -> G : A --> B ) | 
						
							| 3 |  | f1ocnv |  |-  ( G : A -1-1-onto-> B -> `' G : B -1-1-onto-> A ) | 
						
							| 4 |  | f1of |  |-  ( `' G : B -1-1-onto-> A -> `' G : B --> A ) | 
						
							| 5 | 3 4 | syl |  |-  ( G : A -1-1-onto-> B -> `' G : B --> A ) | 
						
							| 6 | 5 | 3ad2ant2 |  |-  ( ( Fun F /\ G : A -1-1-onto-> B /\ X e. B ) -> `' G : B --> A ) | 
						
							| 7 |  | simp3 |  |-  ( ( Fun F /\ G : A -1-1-onto-> B /\ X e. B ) -> X e. B ) | 
						
							| 8 | 6 7 | ffvelcdmd |  |-  ( ( Fun F /\ G : A -1-1-onto-> B /\ X e. B ) -> ( `' G ` X ) e. A ) | 
						
							| 9 |  | fvco3 |  |-  ( ( G : A --> B /\ ( `' G ` X ) e. A ) -> ( ( F o. G ) ` ( `' G ` X ) ) = ( F ` ( G ` ( `' G ` X ) ) ) ) | 
						
							| 10 | 2 8 9 | syl2anc |  |-  ( ( Fun F /\ G : A -1-1-onto-> B /\ X e. B ) -> ( ( F o. G ) ` ( `' G ` X ) ) = ( F ` ( G ` ( `' G ` X ) ) ) ) | 
						
							| 11 |  | f1ocnvfv2 |  |-  ( ( G : A -1-1-onto-> B /\ X e. B ) -> ( G ` ( `' G ` X ) ) = X ) | 
						
							| 12 | 11 | 3adant1 |  |-  ( ( Fun F /\ G : A -1-1-onto-> B /\ X e. B ) -> ( G ` ( `' G ` X ) ) = X ) | 
						
							| 13 | 12 | fveq2d |  |-  ( ( Fun F /\ G : A -1-1-onto-> B /\ X e. B ) -> ( F ` ( G ` ( `' G ` X ) ) ) = ( F ` X ) ) | 
						
							| 14 | 10 13 | eqtrd |  |-  ( ( Fun F /\ G : A -1-1-onto-> B /\ X e. B ) -> ( ( F o. G ) ` ( `' G ` X ) ) = ( F ` X ) ) |