Step |
Hyp |
Ref |
Expression |
1 |
|
f1orel |
|- ( G : A -1-1-onto-> B -> Rel G ) |
2 |
|
dfrel2 |
|- ( Rel G <-> `' `' G = G ) |
3 |
1 2
|
sylib |
|- ( G : A -1-1-onto-> B -> `' `' G = G ) |
4 |
3
|
3ad2ant2 |
|- ( ( Fun F /\ G : A -1-1-onto-> B /\ X e. A ) -> `' `' G = G ) |
5 |
4
|
fveq1d |
|- ( ( Fun F /\ G : A -1-1-onto-> B /\ X e. A ) -> ( `' `' G ` X ) = ( G ` X ) ) |
6 |
5
|
fveq2d |
|- ( ( Fun F /\ G : A -1-1-onto-> B /\ X e. A ) -> ( ( F o. `' G ) ` ( `' `' G ` X ) ) = ( ( F o. `' G ) ` ( G ` X ) ) ) |
7 |
|
f1ocnv |
|- ( G : A -1-1-onto-> B -> `' G : B -1-1-onto-> A ) |
8 |
|
f1ocan1fv |
|- ( ( Fun F /\ `' G : B -1-1-onto-> A /\ X e. A ) -> ( ( F o. `' G ) ` ( `' `' G ` X ) ) = ( F ` X ) ) |
9 |
7 8
|
syl3an2 |
|- ( ( Fun F /\ G : A -1-1-onto-> B /\ X e. A ) -> ( ( F o. `' G ) ` ( `' `' G ` X ) ) = ( F ` X ) ) |
10 |
6 9
|
eqtr3d |
|- ( ( Fun F /\ G : A -1-1-onto-> B /\ X e. A ) -> ( ( F o. `' G ) ` ( G ` X ) ) = ( F ` X ) ) |