Metamath Proof Explorer


Theorem f1ocan2fv

Description: Cancel a composition by the converse of a bijection by preapplying the bijection. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion f1ocan2fv ( ( Fun 𝐹𝐺 : 𝐴1-1-onto𝐵𝑋𝐴 ) → ( ( 𝐹 𝐺 ) ‘ ( 𝐺𝑋 ) ) = ( 𝐹𝑋 ) )

Proof

Step Hyp Ref Expression
1 f1orel ( 𝐺 : 𝐴1-1-onto𝐵 → Rel 𝐺 )
2 dfrel2 ( Rel 𝐺 𝐺 = 𝐺 )
3 1 2 sylib ( 𝐺 : 𝐴1-1-onto𝐵 𝐺 = 𝐺 )
4 3 3ad2ant2 ( ( Fun 𝐹𝐺 : 𝐴1-1-onto𝐵𝑋𝐴 ) → 𝐺 = 𝐺 )
5 4 fveq1d ( ( Fun 𝐹𝐺 : 𝐴1-1-onto𝐵𝑋𝐴 ) → ( 𝐺𝑋 ) = ( 𝐺𝑋 ) )
6 5 fveq2d ( ( Fun 𝐹𝐺 : 𝐴1-1-onto𝐵𝑋𝐴 ) → ( ( 𝐹 𝐺 ) ‘ ( 𝐺𝑋 ) ) = ( ( 𝐹 𝐺 ) ‘ ( 𝐺𝑋 ) ) )
7 f1ocnv ( 𝐺 : 𝐴1-1-onto𝐵 𝐺 : 𝐵1-1-onto𝐴 )
8 f1ocan1fv ( ( Fun 𝐹 𝐺 : 𝐵1-1-onto𝐴𝑋𝐴 ) → ( ( 𝐹 𝐺 ) ‘ ( 𝐺𝑋 ) ) = ( 𝐹𝑋 ) )
9 7 8 syl3an2 ( ( Fun 𝐹𝐺 : 𝐴1-1-onto𝐵𝑋𝐴 ) → ( ( 𝐹 𝐺 ) ‘ ( 𝐺𝑋 ) ) = ( 𝐹𝑋 ) )
10 6 9 eqtr3d ( ( Fun 𝐹𝐺 : 𝐴1-1-onto𝐵𝑋𝐴 ) → ( ( 𝐹 𝐺 ) ‘ ( 𝐺𝑋 ) ) = ( 𝐹𝑋 ) )