| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1orel | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵  →  Rel  𝐺 ) | 
						
							| 2 |  | dfrel2 | ⊢ ( Rel  𝐺  ↔  ◡ ◡ 𝐺  =  𝐺 ) | 
						
							| 3 | 1 2 | sylib | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵  →  ◡ ◡ 𝐺  =  𝐺 ) | 
						
							| 4 | 3 | 3ad2ant2 | ⊢ ( ( Fun  𝐹  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐵  ∧  𝑋  ∈  𝐴 )  →  ◡ ◡ 𝐺  =  𝐺 ) | 
						
							| 5 | 4 | fveq1d | ⊢ ( ( Fun  𝐹  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐵  ∧  𝑋  ∈  𝐴 )  →  ( ◡ ◡ 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑋 ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( ( Fun  𝐹  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐵  ∧  𝑋  ∈  𝐴 )  →  ( ( 𝐹  ∘  ◡ 𝐺 ) ‘ ( ◡ ◡ 𝐺 ‘ 𝑋 ) )  =  ( ( 𝐹  ∘  ◡ 𝐺 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 7 |  | f1ocnv | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵  →  ◡ 𝐺 : 𝐵 –1-1-onto→ 𝐴 ) | 
						
							| 8 |  | f1ocan1fv | ⊢ ( ( Fun  𝐹  ∧  ◡ 𝐺 : 𝐵 –1-1-onto→ 𝐴  ∧  𝑋  ∈  𝐴 )  →  ( ( 𝐹  ∘  ◡ 𝐺 ) ‘ ( ◡ ◡ 𝐺 ‘ 𝑋 ) )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 9 | 7 8 | syl3an2 | ⊢ ( ( Fun  𝐹  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐵  ∧  𝑋  ∈  𝐴 )  →  ( ( 𝐹  ∘  ◡ 𝐺 ) ‘ ( ◡ ◡ 𝐺 ‘ 𝑋 ) )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 10 | 6 9 | eqtr3d | ⊢ ( ( Fun  𝐹  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐵  ∧  𝑋  ∈  𝐴 )  →  ( ( 𝐹  ∘  ◡ 𝐺 ) ‘ ( 𝐺 ‘ 𝑋 ) )  =  ( 𝐹 ‘ 𝑋 ) ) |