Step |
Hyp |
Ref |
Expression |
1 |
|
f1orel |
⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → Rel 𝐺 ) |
2 |
|
dfrel2 |
⊢ ( Rel 𝐺 ↔ ◡ ◡ 𝐺 = 𝐺 ) |
3 |
1 2
|
sylib |
⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → ◡ ◡ 𝐺 = 𝐺 ) |
4 |
3
|
3ad2ant2 |
⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ◡ ◡ 𝐺 = 𝐺 ) |
5 |
4
|
fveq1d |
⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( ◡ ◡ 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑋 ) ) |
6 |
5
|
fveq2d |
⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ∘ ◡ 𝐺 ) ‘ ( ◡ ◡ 𝐺 ‘ 𝑋 ) ) = ( ( 𝐹 ∘ ◡ 𝐺 ) ‘ ( 𝐺 ‘ 𝑋 ) ) ) |
7 |
|
f1ocnv |
⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐺 : 𝐵 –1-1-onto→ 𝐴 ) |
8 |
|
f1ocan1fv |
⊢ ( ( Fun 𝐹 ∧ ◡ 𝐺 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ∘ ◡ 𝐺 ) ‘ ( ◡ ◡ 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
9 |
7 8
|
syl3an2 |
⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ∘ ◡ 𝐺 ) ‘ ( ◡ ◡ 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
10 |
6 9
|
eqtr3d |
⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ∘ ◡ 𝐺 ) ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |