Step |
Hyp |
Ref |
Expression |
1 |
|
f1of |
⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → 𝐺 : 𝐴 ⟶ 𝐵 ) |
2 |
1
|
3ad2ant2 |
⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → 𝐺 : 𝐴 ⟶ 𝐵 ) |
3 |
|
f1ocnv |
⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐺 : 𝐵 –1-1-onto→ 𝐴 ) |
4 |
|
f1of |
⊢ ( ◡ 𝐺 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐺 : 𝐵 ⟶ 𝐴 ) |
5 |
3 4
|
syl |
⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐺 : 𝐵 ⟶ 𝐴 ) |
6 |
5
|
3ad2ant2 |
⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ◡ 𝐺 : 𝐵 ⟶ 𝐴 ) |
7 |
|
simp3 |
⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
8 |
6 7
|
ffvelrnd |
⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ◡ 𝐺 ‘ 𝑋 ) ∈ 𝐴 ) |
9 |
|
fvco3 |
⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ ( ◡ 𝐺 ‘ 𝑋 ) ∈ 𝐴 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( ◡ 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑋 ) ) ) ) |
10 |
2 8 9
|
syl2anc |
⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( ◡ 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑋 ) ) ) ) |
11 |
|
f1ocnvfv2 |
⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑋 ) ) = 𝑋 ) |
12 |
11
|
3adant1 |
⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑋 ) ) = 𝑋 ) |
13 |
12
|
fveq2d |
⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑋 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |
14 |
10 13
|
eqtrd |
⊢ ( ( Fun 𝐹 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( ◡ 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |