Metamath Proof Explorer


Theorem f1ocan1fv

Description: Cancel a composition by a bijection by preapplying the converse. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 27-Dec-2014)

Ref Expression
Assertion f1ocan1fv ( ( Fun 𝐹𝐺 : 𝐴1-1-onto𝐵𝑋𝐵 ) → ( ( 𝐹𝐺 ) ‘ ( 𝐺𝑋 ) ) = ( 𝐹𝑋 ) )

Proof

Step Hyp Ref Expression
1 f1of ( 𝐺 : 𝐴1-1-onto𝐵𝐺 : 𝐴𝐵 )
2 1 3ad2ant2 ( ( Fun 𝐹𝐺 : 𝐴1-1-onto𝐵𝑋𝐵 ) → 𝐺 : 𝐴𝐵 )
3 f1ocnv ( 𝐺 : 𝐴1-1-onto𝐵 𝐺 : 𝐵1-1-onto𝐴 )
4 f1of ( 𝐺 : 𝐵1-1-onto𝐴 𝐺 : 𝐵𝐴 )
5 3 4 syl ( 𝐺 : 𝐴1-1-onto𝐵 𝐺 : 𝐵𝐴 )
6 5 3ad2ant2 ( ( Fun 𝐹𝐺 : 𝐴1-1-onto𝐵𝑋𝐵 ) → 𝐺 : 𝐵𝐴 )
7 simp3 ( ( Fun 𝐹𝐺 : 𝐴1-1-onto𝐵𝑋𝐵 ) → 𝑋𝐵 )
8 6 7 ffvelrnd ( ( Fun 𝐹𝐺 : 𝐴1-1-onto𝐵𝑋𝐵 ) → ( 𝐺𝑋 ) ∈ 𝐴 )
9 fvco3 ( ( 𝐺 : 𝐴𝐵 ∧ ( 𝐺𝑋 ) ∈ 𝐴 ) → ( ( 𝐹𝐺 ) ‘ ( 𝐺𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐺𝑋 ) ) ) )
10 2 8 9 syl2anc ( ( Fun 𝐹𝐺 : 𝐴1-1-onto𝐵𝑋𝐵 ) → ( ( 𝐹𝐺 ) ‘ ( 𝐺𝑋 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐺𝑋 ) ) ) )
11 f1ocnvfv2 ( ( 𝐺 : 𝐴1-1-onto𝐵𝑋𝐵 ) → ( 𝐺 ‘ ( 𝐺𝑋 ) ) = 𝑋 )
12 11 3adant1 ( ( Fun 𝐹𝐺 : 𝐴1-1-onto𝐵𝑋𝐵 ) → ( 𝐺 ‘ ( 𝐺𝑋 ) ) = 𝑋 )
13 12 fveq2d ( ( Fun 𝐹𝐺 : 𝐴1-1-onto𝐵𝑋𝐵 ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐺𝑋 ) ) ) = ( 𝐹𝑋 ) )
14 10 13 eqtrd ( ( Fun 𝐹𝐺 : 𝐴1-1-onto𝐵𝑋𝐵 ) → ( ( 𝐹𝐺 ) ‘ ( 𝐺𝑋 ) ) = ( 𝐹𝑋 ) )