| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1of | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵  →  𝐺 : 𝐴 ⟶ 𝐵 ) | 
						
							| 2 | 1 | 3ad2ant2 | ⊢ ( ( Fun  𝐹  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐵  ∧  𝑋  ∈  𝐵 )  →  𝐺 : 𝐴 ⟶ 𝐵 ) | 
						
							| 3 |  | f1ocnv | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵  →  ◡ 𝐺 : 𝐵 –1-1-onto→ 𝐴 ) | 
						
							| 4 |  | f1of | ⊢ ( ◡ 𝐺 : 𝐵 –1-1-onto→ 𝐴  →  ◡ 𝐺 : 𝐵 ⟶ 𝐴 ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵  →  ◡ 𝐺 : 𝐵 ⟶ 𝐴 ) | 
						
							| 6 | 5 | 3ad2ant2 | ⊢ ( ( Fun  𝐹  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐵  ∧  𝑋  ∈  𝐵 )  →  ◡ 𝐺 : 𝐵 ⟶ 𝐴 ) | 
						
							| 7 |  | simp3 | ⊢ ( ( Fun  𝐹  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐵  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 8 | 6 7 | ffvelcdmd | ⊢ ( ( Fun  𝐹  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐵  ∧  𝑋  ∈  𝐵 )  →  ( ◡ 𝐺 ‘ 𝑋 )  ∈  𝐴 ) | 
						
							| 9 |  | fvco3 | ⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵  ∧  ( ◡ 𝐺 ‘ 𝑋 )  ∈  𝐴 )  →  ( ( 𝐹  ∘  𝐺 ) ‘ ( ◡ 𝐺 ‘ 𝑋 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑋 ) ) ) ) | 
						
							| 10 | 2 8 9 | syl2anc | ⊢ ( ( Fun  𝐹  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐵  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝐹  ∘  𝐺 ) ‘ ( ◡ 𝐺 ‘ 𝑋 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑋 ) ) ) ) | 
						
							| 11 |  | f1ocnvfv2 | ⊢ ( ( 𝐺 : 𝐴 –1-1-onto→ 𝐵  ∧  𝑋  ∈  𝐵 )  →  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 12 | 11 | 3adant1 | ⊢ ( ( Fun  𝐹  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐵  ∧  𝑋  ∈  𝐵 )  →  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( ( Fun  𝐹  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐵  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑋 ) ) )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 14 | 10 13 | eqtrd | ⊢ ( ( Fun  𝐹  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐵  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝐹  ∘  𝐺 ) ‘ ( ◡ 𝐺 ‘ 𝑋 ) )  =  ( 𝐹 ‘ 𝑋 ) ) |