Metamath Proof Explorer


Theorem f1ocan1fv

Description: Cancel a composition by a bijection by preapplying the converse. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 27-Dec-2014)

Ref Expression
Assertion f1ocan1fv FunFG:A1-1 ontoBXBFGG-1X=FX

Proof

Step Hyp Ref Expression
1 f1of G:A1-1 ontoBG:AB
2 1 3ad2ant2 FunFG:A1-1 ontoBXBG:AB
3 f1ocnv G:A1-1 ontoBG-1:B1-1 ontoA
4 f1of G-1:B1-1 ontoAG-1:BA
5 3 4 syl G:A1-1 ontoBG-1:BA
6 5 3ad2ant2 FunFG:A1-1 ontoBXBG-1:BA
7 simp3 FunFG:A1-1 ontoBXBXB
8 6 7 ffvelcdmd FunFG:A1-1 ontoBXBG-1XA
9 fvco3 G:ABG-1XAFGG-1X=FGG-1X
10 2 8 9 syl2anc FunFG:A1-1 ontoBXBFGG-1X=FGG-1X
11 f1ocnvfv2 G:A1-1 ontoBXBGG-1X=X
12 11 3adant1 FunFG:A1-1 ontoBXBGG-1X=X
13 12 fveq2d FunFG:A1-1 ontoBXBFGG-1X=FX
14 10 13 eqtrd FunFG:A1-1 ontoBXBFGG-1X=FX