Metamath Proof Explorer


Theorem cofcut2

Description: If A and C are mutually cofinal and B and D are mutually coinitial, then the cut of A and B is equal to the cut of C and D . Theorem 2.7 of Gonshor p. 10. (Contributed by Scott Fenton, 25-Sep-2024)

Ref Expression
Assertion cofcut2
|- ( ( ( A < ( A |s B ) = ( C |s D ) )

Proof

Step Hyp Ref Expression
1 simp11
 |-  ( ( ( A < A <
2 simp2
 |-  ( ( ( A < ( A. x e. A E. y e. C x <_s y /\ A. z e. B E. w e. D w <_s z ) )
3 simp12
 |-  ( ( ( A < C e. ~P No )
4 simp3l
 |-  ( ( ( A < A. t e. C E. u e. A t <_s u )
5 scutcut
 |-  ( A < ( ( A |s B ) e. No /\ A <
6 1 5 syl
 |-  ( ( ( A < ( ( A |s B ) e. No /\ A <
7 6 simp2d
 |-  ( ( ( A < A <
8 cofsslt
 |-  ( ( C e. ~P No /\ A. t e. C E. u e. A t <_s u /\ A < C <
9 3 4 7 8 syl3anc
 |-  ( ( ( A < C <
10 simp13
 |-  ( ( ( A < D e. ~P No )
11 simp3r
 |-  ( ( ( A < A. r e. D E. s e. B s <_s r )
12 6 simp3d
 |-  ( ( ( A < { ( A |s B ) } <
13 coinitsslt
 |-  ( ( D e. ~P No /\ A. r e. D E. s e. B s <_s r /\ { ( A |s B ) } < { ( A |s B ) } <
14 10 11 12 13 syl3anc
 |-  ( ( ( A < { ( A |s B ) } <
15 cofcut1
 |-  ( ( A < ( A |s B ) = ( C |s D ) )
16 1 2 9 14 15 syl112anc
 |-  ( ( ( A < ( A |s B ) = ( C |s D ) )