Metamath Proof Explorer


Theorem cofcut2

Description: If A and C are mutually cofinal and B and D are mutually coinitial, then the cut of A and B is equal to the cut of C and D . Theorem 2.7 of Gonshor p. 10. (Contributed by Scott Fenton, 25-Sep-2024)

Ref Expression
Assertion cofcut2 ( ( ( 𝐴 <<s 𝐵𝐶 ∈ 𝒫 No 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡𝐶𝑢𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟𝐷𝑠𝐵 𝑠 ≤s 𝑟 ) ) → ( 𝐴 |s 𝐵 ) = ( 𝐶 |s 𝐷 ) )

Proof

Step Hyp Ref Expression
1 simp11 ( ( ( 𝐴 <<s 𝐵𝐶 ∈ 𝒫 No 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡𝐶𝑢𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟𝐷𝑠𝐵 𝑠 ≤s 𝑟 ) ) → 𝐴 <<s 𝐵 )
2 simp2 ( ( ( 𝐴 <<s 𝐵𝐶 ∈ 𝒫 No 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡𝐶𝑢𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟𝐷𝑠𝐵 𝑠 ≤s 𝑟 ) ) → ( ∀ 𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧 ) )
3 simp12 ( ( ( 𝐴 <<s 𝐵𝐶 ∈ 𝒫 No 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡𝐶𝑢𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟𝐷𝑠𝐵 𝑠 ≤s 𝑟 ) ) → 𝐶 ∈ 𝒫 No )
4 simp3l ( ( ( 𝐴 <<s 𝐵𝐶 ∈ 𝒫 No 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡𝐶𝑢𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟𝐷𝑠𝐵 𝑠 ≤s 𝑟 ) ) → ∀ 𝑡𝐶𝑢𝐴 𝑡 ≤s 𝑢 )
5 scutcut ( 𝐴 <<s 𝐵 → ( ( 𝐴 |s 𝐵 ) ∈ No 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) )
6 1 5 syl ( ( ( 𝐴 <<s 𝐵𝐶 ∈ 𝒫 No 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡𝐶𝑢𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟𝐷𝑠𝐵 𝑠 ≤s 𝑟 ) ) → ( ( 𝐴 |s 𝐵 ) ∈ No 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) )
7 6 simp2d ( ( ( 𝐴 <<s 𝐵𝐶 ∈ 𝒫 No 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡𝐶𝑢𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟𝐷𝑠𝐵 𝑠 ≤s 𝑟 ) ) → 𝐴 <<s { ( 𝐴 |s 𝐵 ) } )
8 cofsslt ( ( 𝐶 ∈ 𝒫 No ∧ ∀ 𝑡𝐶𝑢𝐴 𝑡 ≤s 𝑢𝐴 <<s { ( 𝐴 |s 𝐵 ) } ) → 𝐶 <<s { ( 𝐴 |s 𝐵 ) } )
9 3 4 7 8 syl3anc ( ( ( 𝐴 <<s 𝐵𝐶 ∈ 𝒫 No 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡𝐶𝑢𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟𝐷𝑠𝐵 𝑠 ≤s 𝑟 ) ) → 𝐶 <<s { ( 𝐴 |s 𝐵 ) } )
10 simp13 ( ( ( 𝐴 <<s 𝐵𝐶 ∈ 𝒫 No 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡𝐶𝑢𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟𝐷𝑠𝐵 𝑠 ≤s 𝑟 ) ) → 𝐷 ∈ 𝒫 No )
11 simp3r ( ( ( 𝐴 <<s 𝐵𝐶 ∈ 𝒫 No 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡𝐶𝑢𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟𝐷𝑠𝐵 𝑠 ≤s 𝑟 ) ) → ∀ 𝑟𝐷𝑠𝐵 𝑠 ≤s 𝑟 )
12 6 simp3d ( ( ( 𝐴 <<s 𝐵𝐶 ∈ 𝒫 No 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡𝐶𝑢𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟𝐷𝑠𝐵 𝑠 ≤s 𝑟 ) ) → { ( 𝐴 |s 𝐵 ) } <<s 𝐵 )
13 coinitsslt ( ( 𝐷 ∈ 𝒫 No ∧ ∀ 𝑟𝐷𝑠𝐵 𝑠 ≤s 𝑟 ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) → { ( 𝐴 |s 𝐵 ) } <<s 𝐷 )
14 10 11 12 13 syl3anc ( ( ( 𝐴 <<s 𝐵𝐶 ∈ 𝒫 No 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡𝐶𝑢𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟𝐷𝑠𝐵 𝑠 ≤s 𝑟 ) ) → { ( 𝐴 |s 𝐵 ) } <<s 𝐷 )
15 cofcut1 ( ( 𝐴 <<s 𝐵 ∧ ( ∀ 𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧 ) ∧ ( 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ) → ( 𝐴 |s 𝐵 ) = ( 𝐶 |s 𝐷 ) )
16 1 2 9 14 15 syl112anc ( ( ( 𝐴 <<s 𝐵𝐶 ∈ 𝒫 No 𝐷 ∈ 𝒫 No ) ∧ ( ∀ 𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀ 𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧 ) ∧ ( ∀ 𝑡𝐶𝑢𝐴 𝑡 ≤s 𝑢 ∧ ∀ 𝑟𝐷𝑠𝐵 𝑠 ≤s 𝑟 ) ) → ( 𝐴 |s 𝐵 ) = ( 𝐶 |s 𝐷 ) )