Metamath Proof Explorer


Theorem cofsslt

Description: If every element of A is bounded by some element of B and B precedes C , then A precedes C . Note - we will often use the term "cofinal" to denote that every element of A is bounded above by some element of B . Similarly, we will use the term "coinitial" to denote that every element of A is bounded below by some element of B . (Contributed by Scott Fenton, 24-Sep-2024)

Ref Expression
Assertion cofsslt ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) → 𝐴 <<s 𝐶 )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) → 𝐴 ∈ 𝒫 No )
2 ssltex2 ( 𝐵 <<s 𝐶𝐶 ∈ V )
3 2 3ad2ant3 ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) → 𝐶 ∈ V )
4 1 elpwid ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) → 𝐴 No )
5 ssltss2 ( 𝐵 <<s 𝐶𝐶 No )
6 5 3ad2ant3 ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) → 𝐶 No )
7 breq1 ( 𝑥 = 𝑎 → ( 𝑥 ≤s 𝑦𝑎 ≤s 𝑦 ) )
8 7 rexbidv ( 𝑥 = 𝑎 → ( ∃ 𝑦𝐵 𝑥 ≤s 𝑦 ↔ ∃ 𝑦𝐵 𝑎 ≤s 𝑦 ) )
9 simp12 ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) ∧ 𝑎𝐴𝑐𝐶 ) → ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦 )
10 simp2 ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) ∧ 𝑎𝐴𝑐𝐶 ) → 𝑎𝐴 )
11 8 9 10 rspcdva ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) ∧ 𝑎𝐴𝑐𝐶 ) → ∃ 𝑦𝐵 𝑎 ≤s 𝑦 )
12 breq2 ( 𝑦 = 𝑏 → ( 𝑎 ≤s 𝑦𝑎 ≤s 𝑏 ) )
13 12 cbvrexvw ( ∃ 𝑦𝐵 𝑎 ≤s 𝑦 ↔ ∃ 𝑏𝐵 𝑎 ≤s 𝑏 )
14 11 13 sylib ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) ∧ 𝑎𝐴𝑐𝐶 ) → ∃ 𝑏𝐵 𝑎 ≤s 𝑏 )
15 simpl11 ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) ∧ 𝑎𝐴𝑐𝐶 ) ∧ ( 𝑏𝐵𝑎 ≤s 𝑏 ) ) → 𝐴 ∈ 𝒫 No )
16 15 elpwid ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) ∧ 𝑎𝐴𝑐𝐶 ) ∧ ( 𝑏𝐵𝑎 ≤s 𝑏 ) ) → 𝐴 No )
17 simpl2 ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) ∧ 𝑎𝐴𝑐𝐶 ) ∧ ( 𝑏𝐵𝑎 ≤s 𝑏 ) ) → 𝑎𝐴 )
18 16 17 sseldd ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) ∧ 𝑎𝐴𝑐𝐶 ) ∧ ( 𝑏𝐵𝑎 ≤s 𝑏 ) ) → 𝑎 No )
19 simpl13 ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) ∧ 𝑎𝐴𝑐𝐶 ) ∧ ( 𝑏𝐵𝑎 ≤s 𝑏 ) ) → 𝐵 <<s 𝐶 )
20 ssltss1 ( 𝐵 <<s 𝐶𝐵 No )
21 19 20 syl ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) ∧ 𝑎𝐴𝑐𝐶 ) ∧ ( 𝑏𝐵𝑎 ≤s 𝑏 ) ) → 𝐵 No )
22 simprl ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) ∧ 𝑎𝐴𝑐𝐶 ) ∧ ( 𝑏𝐵𝑎 ≤s 𝑏 ) ) → 𝑏𝐵 )
23 21 22 sseldd ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) ∧ 𝑎𝐴𝑐𝐶 ) ∧ ( 𝑏𝐵𝑎 ≤s 𝑏 ) ) → 𝑏 No )
24 19 5 syl ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) ∧ 𝑎𝐴𝑐𝐶 ) ∧ ( 𝑏𝐵𝑎 ≤s 𝑏 ) ) → 𝐶 No )
25 simpl3 ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) ∧ 𝑎𝐴𝑐𝐶 ) ∧ ( 𝑏𝐵𝑎 ≤s 𝑏 ) ) → 𝑐𝐶 )
26 24 25 sseldd ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) ∧ 𝑎𝐴𝑐𝐶 ) ∧ ( 𝑏𝐵𝑎 ≤s 𝑏 ) ) → 𝑐 No )
27 simprr ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) ∧ 𝑎𝐴𝑐𝐶 ) ∧ ( 𝑏𝐵𝑎 ≤s 𝑏 ) ) → 𝑎 ≤s 𝑏 )
28 19 22 25 ssltsepcd ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) ∧ 𝑎𝐴𝑐𝐶 ) ∧ ( 𝑏𝐵𝑎 ≤s 𝑏 ) ) → 𝑏 <s 𝑐 )
29 18 23 26 27 28 slelttrd ( ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) ∧ 𝑎𝐴𝑐𝐶 ) ∧ ( 𝑏𝐵𝑎 ≤s 𝑏 ) ) → 𝑎 <s 𝑐 )
30 14 29 rexlimddv ( ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) ∧ 𝑎𝐴𝑐𝐶 ) → 𝑎 <s 𝑐 )
31 1 3 4 6 30 ssltd ( ( 𝐴 ∈ 𝒫 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶 ) → 𝐴 <<s 𝐶 )